7,812 research outputs found

    The electronic structure of palladium in the presence of many-body effects

    Full text link
    Including on-site electronic interactions described by the multi-orbital Hubbard model we study the correlation effects in the electronic structure of bulk palladium. We use a combined density functional and dynamical mean field theory, LDA+DMFT, based on the fluctuation exchange approximation. The agreement between the experimentally determined and the theoretical lattice constant and bulk modulus is improved when correlation effects are included. It is found that correlations modify the Fermi surface around the neck at the LL-point while the Fermi surface tube structures show little correlation effects. At the same time we discuss the possibility of satellite formation in the high energy binding region. Spectral functions obtained within the LDA+DMFT and GWGW methods are compared to discuss non-local correlation effects. For relatively weak interaction strength of the local Coulomb and exchange parameters spectra from LDA+DMFT shows no major difference in comparison to GWGW

    Transmission through correlated Cun_nCoCun_n heterostructures

    Get PDF
    The effects of local electronic interactions and finite temperatures upon the transmission across the Cu4_4CoCu4_4 metallic heterostructure are studied in a combined density functional and dynamical mean field theory. It is shown that, as the electronic correlations are taken into account via a local but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in the minority spin channel), whereby the spin polarization of the transmission increases. The latter is due to a more significant dd-electrons contribution, as compared to the non-correlated case in which the transport is dominated by ss and pp electrons.Comment: 29 pages, 7 figures, submited to PR

    On the superconducting nature of the Bi-II phase of elemental Bismuth

    Full text link
    The superconductivity in the Bi-II phase of elemental Bismuth (transition temperature Tc3.92T_{\rm c}\simeq3.92 K at pressure p2.80p\simeq 2.80 GPa) was studied experimentally by means of the muon-spin rotation as well as theoretically by using the Eliashberg theory in combination with Density Functional Theory calculations. Experiments reveal that Bi-II is a type-I superconductor with a zero temperature value of the thermodynamic critical field Bc(0)31.97B_{\rm c}(0)\simeq31.97~mT. The Eliashberg theory approach provides a good agreement with the experimental TcT_{\rm c} and the temperature evolution of BcB_{\rm c}. The estimated value for the retardation (coupling) parameter kBTc/ωln0.07k_{\rm B}T_{\rm c}/\omega_{\rm ln} \approx 0.07 (ωln\omega_{\rm ln} is the logarithmically averaged phonon frequency) suggests that Bi-II is an intermediately-coupled superconductor.Comment: 6 pages, 2 figure

    Lattice dynamics of palladium in the presence of electronic correlations

    Full text link
    We compute the phonon dispersion, density of states, and the Gr\"uneisen parameters of bulk palladium in the combined density functional theory (DFT) and dynamical mean-field theory (DMFT). We find good agreement with experimental results for ground state properties (equilibrium lattice parameter and bulk modulus) and the experimentally measured phonon spectra. We demonstrate that at temperatures T20 KT \lesssim 20~K the phonon frequency in the vicinity of the Kohn anomaly, ωT1(qK)\omega_{T1}({\bf q}_{K}), strongly decreases. This is in contrast to DFT where this frequency remains essentially constant in the whole temperature range. Apparently correlation effects reduce the restoring force of the ionic displacements at low temperatures, leading to a mode softening.Comment: minor revision

    Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point

    Full text link
    Lipid monolayers have been shown to represent a powerful tool in studying mechanical and thermodynamic properties of lipid membranes as well as their interaction with proteins. Using Einstein's theory of fluctuations we here demonstrate, that an experimentally derived linear relationship both between transition entropy S and area A as well as between transition entropy and charge q implies a linear relationships between compressibility \kappa_T, heat capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity CT. We demonstrate that these couplings have strong predictive power as they allow calculating electrical and thermal properties from mechanical measurements. The precision of the prediction increases as the critical point TC is approached

    Non-Abelian Geometric Phases and Conductance of Spin-3/2 Holes

    Full text link
    Angular momentum J=3/2J=3/2 holes in semiconductor heterostructures are showed to accumulate nonabelian geometric phases as a consequence of their motion. We provide a general framework for analyzing such a system and compute conductance oscillations for a simple ring geometry. We also analyze a figure-8 geometry which captures intrinsically nonabelian interference effects.Comment: 4 pages, 3 figures (encapsulated PostScript) Replaced fig. 1 and fig.

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore