148 research outputs found
Randomly Charged Polymers, Random Walks, and Their Extremal Properties
Motivated by an investigation of ground state properties of randomly charged
polymers, we discuss the size distribution of the largest Q-segments (segments
with total charge Q) in such N-mers. Upon mapping the charge sequence to
one--dimensional random walks (RWs), this corresponds to finding the
probability for the largest segment with total displacement Q in an N-step RW
to have length L. Using analytical, exact enumeration, and Monte Carlo methods,
we reveal the complex structure of the probability distribution in the large N
limit. In particular, the size of the longest neutral segment has a
distribution with a square-root singularity at l=L/N=1, an essential
singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near
l=1 is related to a another interesting RW problem which we call the "staircase
problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe
Theory and Applications of X-ray Standing Waves in Real Crystals
Theoretical aspects of x-ray standing wave method for investigation of the
real structure of crystals are considered in this review paper. Starting from
the general approach of the secondary radiation yield from deformed crystals
this theory is applied to different concreat cases. Various models of deformed
crystals like: bicrystal model, multilayer model, crystals with extended
deformation field are considered in detailes. Peculiarities of x-ray standing
wave behavior in different scattering geometries (Bragg, Laue) are analysed in
detailes. New possibilities to solve the phase problem with x-ray standing wave
method are discussed in the review. General theoretical approaches are
illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table
Our past creates our present: a brief overview of racism and colonialism in Western paleontology
As practitioners of a historical science, paleontologists and geoscientists are well versed in the idea that the ability to understand and to anticipate the future relies upon our collective knowledge of the past. Despite this understanding, the fundamental role that the history of paleontology and the geosciences plays in shaping the structure and culture of our disciplines is seldom recognized and therefore not acted upon sufficiently. Here, we present a brief review of the history of paleontology and geology in Western countries, with a particular focus on North America since the 1800s. Western paleontology and geology are intertwined with systematic practices of exclusion, oppression, and erasure that arose from their direct participation in the extraction of geological and biological resources at the expense of Black, Indigenous, and People of Color (BIPOC). Our collective failure to acknowledge this history hinders our ability to address these issues meaningfully and systemically in present-day educational, academic, and professional settings. By discussing these issues and suggesting some ways forward, we intend to promote a deeper reflection upon our collective history and a broader conversation surrounding racism, colonialism, and exclusion within our scientific communities. Ultimately, it is necessary to listen to members of the communities most impacted by these issues to create actionable steps forward while holding ourselves accountable for the past
Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Diagnosis of Malaria
BACKGROUND: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. METHODOLOGY AND SIGNIFICANT FINDINGS: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. CONCLUSION: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs
- …