35 research outputs found

    Holocene development and anthropogenic disturbance of a shallow lake system in Central Ireland recorded by diatoms

    No full text
    Three cores from two connected lakes in Central Ireland (Lough Kinale and Derragh Lough) were investigated using diatom analysis to establish the Holocene development of the lacustrine system, any local variations within the lakes and any anthropogenic influences. The study area was situated in a lowland location and the lakes were shallow, unstratified and interconnected. Litho-and bio-stratigraphical analyses of the lake cores and deposits beneath a mire separating the two lakes showed the changing spatial configuration of the lake system in the early Holocene and the separation of the initial lake into three basins (cf. lacustrine cells) and finally into two interlinked lakes. The evolution of the lake system is conceptualised as the development of distinct lacustrine cells, and its sediments have recorded changes in the physical (geography, depth and sedimentation) and chemical (water chemistry) properties of the lakes inferred through diatom analyses. The longest sequence, from the early Holocene, records fluctuating lake levels and these are correlated with geomorphological mapping and surveying of palaeoshorelines. The diatom assemblages of the upper 2 m of the three cores, covering approximately the last 2000–3000 radiocarbon years show considerable difference in trophic status and life-form categories. This is related to the location of the cores in the lake and also the distance from human settlement with particular reference to proximity to crannog (artificial island) construction and use. The most central core from the deepest part of Lough Kinale has the least representation of the human settlement and agricultural activity in the catchment and on the fringes of the lake, whereas the core taken from the edge of a crannog is able to identify when construction and use of the crannog occurred. The local nature of the palaeoecological response to human activity due to incomplete water mixing has the advantage of allowing the lake sediment cores to be used to determine spatially discrete settlement patterns

    High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: Evidence from lakes, fish exclosures and surface sediments

    Get PDF
    The mean body size of limnetic cladocerans decreases from cold temperate to tropical regions, in both the northern and the southern hemisphere. This size shift has been attributed to both direct (e.g. physiological) or indirect (especially increased predation) impacts. To provide further information on the role of predation, we compiled results from several studies of subtropical Uruguayan lakes using three different approaches: (i) field observations from two lakes with contrasting fish abundance, Lakes Rivera and RodĂł, (ii) fish exclusion experiments conducted in in-lake mesocosms in three lakes, and (iii) analyses of the Daphnia egg bank in the surface sediment of eighteen lakes. When fish predation pressure was low due to fish kills in Lake Rivera, large-bodied Daphnia appeared. In contrast, small-sized cladocerans were abundant in Lake RodĂł, which exhibited a typical high abundance of fish. Likewise, relatively large cladocerans (e.g. Daphnia and Simocephalus) appeared in fishless mesocosms after only 2 weeks, most likely hatched from resting egg banks stored in the surface sediment, but their abundance declined again after fish stocking. Moreover, field studies showed that 9 out of 18 Uruguayan shallow lakes had resting eggs of Daphnia in their surface sediment despite that this genus was only recorded in three of the lakes in summer water samples, indicating that Daphnia might be able to build up populations at low risk of predation. Our results show that medium and large-sized zooplankton can occur in subtropical lakes when fish predation is removed. The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of small-sized zooplankton in warm lakes.Fil: Iglesias, Carlos. University Aarhus; Dinamarca. Universidad de la RepĂșblica; UruguayFil: Mazzeo, NĂ©stor. Universidad de la RepĂșblica; UruguayFil: Meerhoff, Mariana. University Aarhus; Dinamarca. Universidad de la RepĂșblica; UruguayFil: Lacerot, Gissell. Universidad de la RepĂșblica; UruguayFil: Clemente, Juan M.. Universidad de la RepĂșblica; UruguayFil: Scasso, Flavio. Universidad de la RepĂșblica; UruguayFil: Kruk, Carla. Universidad de la RepĂșblica; UruguayFil: Goyenola, Guillermo. Universidad de la RepĂșblica; UruguayFil: GarcĂ­a Alonso, Javier. Universidad de la RepĂșblica; Uruguay. Natural History Museum; Reino UnidoFil: Amsinck, Susanne L.. University Aarhus; DinamarcaFil: Paggi, Juan Cesar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto Nacional de LimnologĂ­a. Universidad Nacional del Litoral. Instituto Nacional de LimnologĂ­a; ArgentinaFil: Jose, Susana Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto Nacional de LimnologĂ­a. Universidad Nacional del Litoral. Instituto Nacional de LimnologĂ­a; ArgentinaFil: Jeppesen, Erik. University Aarhus; Dinamarca. Greenland Institute of Natural Resources; Groenlandia. Sino-Danish Centre for Education and Research; Chin

    Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes

    Get PDF
    Disentangling the effects of climate change on nature is one of the main challenges facing ecologists nowadays. Warmer climates forces strong effects on lake biota for fish, leading to a reduction in size, changes in diet, more frequent reproduction, and stronger cascading effects. Space-for-time substitution studies (SFTS) are often used to unravel climate effects on lakes biota; however, results from continental lakes are potentially confounded by biogeographical and evolutionary differences, also leading to an overall higher fish species richness in warm lakes. Such differences may not be found in lakes on remote islands, where natural fish free lakes have been subjected to stocking only during the past few hundred years. We studied 20 species-poor lakes located in two remote island groups with contrasting climates, but similar seasonality: the Faroe Islands (cold; 6.5 ± 2.8 °C annual average (SD) and the Azores Islands (warm; 17.3 ± 2.9 °C)). As for mainland lakes, mean body size of fish in the warmer lakes were smaller overall, and phytoplankton per unit of phosphorus higher. The Ύ13C carbon range for basal organisms, and for the whole food web, appeared wider in colder lakes. In contrast to previous works in continental fresh waters, Layman metrics of the fish food web were similar between the two climatic regions. Our results from insular systems provide further evidence that ambient temperatures, at least partially, drive the changes in fish size structure and the cascading effects found along latitude gradients in lakes

    An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale

    No full text
    Exquisite control over positioning nanoscale components on a protein scaffold allows bottom-up self-assembly of nanodevices. Using cowpea mosaic virus, modified to express cysteine residues on the capsid exterior, gold nanoparticles were attached to the viral scaffold to produce specific interparticle distances (see picture). The nanoparticles were then interconnected using thiol-terminated conjugated organic molecules that act as "molecular wires", resulting in a 3D spherical conductive network, which is only 30 nm in diameter

    Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes

    No full text
    1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36 68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate.2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid-European lakes atintermediate latitudes with intermediate conductivities, trophic state and temperatures.3. Large-sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid-tolerant species were also occasionally abundant. Small-sized, benthic-associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species-specific preferences for habitat and environmental conditions in the Mid-European group of lakes. Taxon richness was low in the southern-most, high-conductivity lakes as well as in the two northern-most sub-arctic lakes.4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production.5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and humanrelated impacts, when a latitude gradient is used as a climate proxy. Future studies shouldfocus on the interrelationships between latitude and gradients in nutrient concentration and conductivity
    corecore