299 research outputs found

    Enzyme replacement therapy with taliglucerase alfa: 36-month safety and efficacy results in adult patients with Gaucher disease previously treated with imiglucerase.

    Get PDF
    Taliglucerase alfa is the first available plant cell-expressed human recombinant therapeutic protein. It is indicated for treatment of patients with type 1 Gaucher disease (GD) in adult and pediatric patients in several countries. Study PB-06-002 examined the safety and efficacy of taliglucerase alfa for 9 months in patients who previously received imiglucerase. The results of adult patients from Study PB-06-002 who continued receiving taliglucerase alfa in extension Study PB-06-003 for up to 36 months are reported here. Eighteen patients received at least one dose of taliglucerase alfa in Study PB-06-003; 10 patients completed 36 total months of therapy, and four patients who transitioned to commercial drug completed 30-33 months of treatment. In patients who completed 36 total months of treatment, mean percent (±standard error) changes from baseline/time of switch to taliglucerase alfa to 36 months were as follows: hemoglobin concentration, -1.0% (±1.9%; n = 10); platelet count, +9.3% (±9.8%; n = 10); spleen volume measured in multiples of normal (MN), -19.8% (±9.9%; n = 7); liver volume measured in MN, +0.9% (±5.4%; n = 8); chitotriosidase activity, -51.5% (±8.1%; n = 10); and CCL18 concentration, -36.5 (±8.0%; n = 10). Four patients developed antidrug antibodies, including one with evidence of neutralizing activity in vitro. All treatment-related adverse events were mild or moderate and transient. The 36-month results of switching from imiglucerase to taliglucerase alfa treatment in adults with GD provide further data on the clinical safety and efficacy of taliglucerase alfa beyond the initial 9 months of the original study. www.clinicaltrials.gov identifier NCT00705939. Am. J. Hematol. 91:661-665, 2016. © 2016 Wiley Periodicals, Inc

    Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats

    Get PDF
    Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals

    Long-term safety and efficacy of pegunigalsidase alfa: A multicenter 6-year study in adult patients with Fabry disease

    Get PDF
    Purpose: Fabry disease (FD) is a rare lysosomal storage disorder caused by pathogenic variants in the GLA gene encoding α-galactosidase (α-Gal)-A. We evaluated long-term safety/efficacy of pegunigalsidase alfa, a novel PEGylated α-Gal-A enzyme replacement therapy (ERT) now approved for FD. Methods: In a phase-1/2 dose-ranging study, 15 ERT-naive adults with FD completed 12 months of pegunigalsidase alfa and enrolled in this 60-month open-label extension of 1 mg/kg pegunigalsidase alfa infusions every 2 weeks. Results: Fifteen patients enrolled (8 males; 7 females); 10 completed ≥48 months (60 months total treatment), and 2 completed 60 months (72 months total treatment). During treatment, most treatment-emergent adverse events were mild/moderate in severity and all infusion-related reactions were mild/moderate in severity. Four patients were transiently positive for anti-pegunigalsidase alfa IgG. Patients showed continuous reduction in plasma lyso-Gb3 concentrations with mean (standard error) reduction of 76.1 [25.1] ng/mL from baseline to month 24. At 60 months, the estimated glomerular filtration rate slope was comparable to that observed in patients treated with other ERTs. Cardiac function assessments revealed stability; no cardiac fibrosis was observed. Conclusion: In this first long-term assessment of pegunigalsidase alfa administration in patients with FD, we found favorable safety/efficacy. Our data suggest long-term continuous benefits of pegunigalsidase alfa treatment in adults with FD

    Assessing and selecting gene expression signals based upon the quality of the measured dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features.</p> <p>Results</p> <p>By pre-selecting genes based upon quality before the identification of differential expression via algorithm such as EDGE, it was found that the percentage of statistically enriched ontologies (p < .05) was improved. Furthermore, it was found that a majority of the genes found via the proposed technique were also selected via an EDGE selection though the reverse was not necessarily true. It was also found that improvements offered by the proposed algorithm are anti-correlated with improvements in the various microarray platforms and the number of replicates. This is illustrated by the fact that newer arrays and experiments with more replicates show less improvement when the filtering for quality is first run before the selection of differentially expressed genes. This suggests that the increase in the number of replicates as well as improvements in array technologies are increase the confidence one has in the dynamics obtained from the experiment.</p> <p>Conclusion</p> <p>We have developed an algorithm that quantifies the quality of temporal biological signal rather than whether the signal illustrates a significant change over the experimental time course. Because the use of these temporal signals, whether it is in mathematical modeling or clustering, focuses upon the entire time series, it is necessary to develop a method to quantify and select for signals which conform to this ideal. By doing this, we have demonstrated a marked and consistent improvement in the results of a clustering exercise over multiple experiments, microarray platforms, and experimental designs.</p

    A comparison of diagnostic tests for lactose malabsorption - which one is the best?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perceived milk intolerance is a common complaint, and tests for lactose malabsorption (LM) are unreliable. This study assesses the agreement between diagnostic tests for LM and describes the diagnostic properties of the tests.</p> <p>Methods</p> <p>Patients above 18 years of age with suspected LM were included. After oral intake of 25 g lactose, a combined test with measurement of serum glucose (s-glucose) and hydrogen (H2) and methane (CH4) in expired air was performed and symptoms were recorded. In patients with discrepancies between the results, the combined test was repeated and a gene test for lactose non-persistence was added. The diagnosis of LM was based on an evaluation of all tests. The following tests were compared: Increase in H2, CH4, H2+CH4 and H2+CH4x2 in expired air, increase in s-glucose, and symptoms. The agreement was calculated and the diagnostic properties described.</p> <p>Results</p> <p>Sixty patients were included, seven (12%) had LM. The agreement (kappa-values) between the methods varied from 0.25 to 0.91. The best test was the lactose breath test with measurement of the increase in H2 + CH4x2 in expired air. With a cut-off level < 18 ppm, the area under the ROC-curve was 0.967 and sensitivity was 100%. This shows that measurement of CH4 in addition to H2 improves the diagnostic properties of the breath test.</p> <p>Conclusion</p> <p>The agreement between commonly used methods for the diagnosis of LM was unsatisfactory. A lactose breath test with measurement of H2 + CH4x2 in expired air had the best diagnostic properties.</p

    Pre-natal and post-natal exposure to respiratory infection and atopic diseases development: a historical cohort study

    Get PDF
    BACKGROUND: According to the hygiene hypothesis, infections in early life protect from allergic diseases. However, in earlier studies surrogate measures of infection rather than clinical infections were associated with decreased frequencies of atopic diseases. Exposure to infection indicating sub-clinical infection rather than clinical infection might protect from atopic diseases. Objective: to investigate whether exposure to acute respiratory infections within pregnancy and the first year of life is associated with atopic conditions at age 5–14 years and to explore when within pregnancy and the first year of life this exposure is most likely to be protective. METHODS: Historical cohort study: Population level data on acute respiratory infections from the routine reporting system of the former German Democratic Republic were linked with individual data from consecutive surveys on atopic diseases in the same region (n = 4672). Statistical analyses included multivariate logistic regression analysis and polynomial distributed lag models. RESULTS: High exposure to acute respiratory infection between pregnancy and age one year was associated with overall reduced odds of asthma, eczema, hay fever, atopic sensitization and total IgE. Exposure in the first 9 months of life showed the most pronounced effect. Adjusted odds ratio's for asthma, hay fever, inhalant sensitization and total IgE were statistical significantly reduced up to around half. CONCLUSION: Exposure to respiratory infection (most likely indicating sub-clinical infection) within pregnancy and the first year of life may be protective in atopic diseases development. The post-natal period thereby seems to be particularly important

    Stochastic variation of transcript abundance in C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcripts can exhibit significant variation in tissue samples from inbred laboratory mice. We have designed and carried out a microarray experiment to examine transcript variation across samples from adipose, heart, kidney, and liver tissues of C57BL/6J mice and to partition variation into within-mouse and between-mouse components. Within-mouse variance captures variation due to heterogeneity of gene expression within tissues, RNA-extraction, and array processing. Between-mouse variance reflects differences in transcript abundance between genetically identical mice.</p> <p>Results</p> <p>The nature and extent of transcript variation differs across tissues. Adipose has the largest total variance and the largest within-mouse variance. Liver has the smallest total variance, but it has the most between-mouse variance. Genes with high variability can be classified into groups with correlated patterns of expression that are enriched for specific biological functions. Variation between mice is associated with circadian rhythm, growth hormone signaling, immune response, androgen regulation, lipid metabolism, and the extracellular matrix. Genes showing correlated patterns of within-mouse variation are also associated with biological functions that largely reflect heterogeneity of cell types within tissues.</p> <p>Conclusions</p> <p>Genetically identical mice can experience different individual outcomes for medically important traits. Variation in gene expression observed between genetically identical mice can identify functional classes of genes that are likely to vary in the absence of experimental perturbations, can inform experimental design decisions, and provides a baseline for the interpretation of gene expression data in interventional studies. The extent of transcript variation among genetically identical mice underscores the importance of stochastic and micro-environmental factors and their phenotypic consequences.</p
    corecore