20 research outputs found
Nonadherence to systemic immune-modifying therapy in people with psoriasis during the COVID-19 pandemic : Findings from a global cross-sectional survey
Nonadherence to immune-modifying therapy is a complex behaviour which, before the COVID-19 pandemic, was shown to be associated with mental health disorders in people with immune-mediated diseases. The COVID-19 pandemic has led to a rise in the global prevalence of anxiety and depression, and limited data exist on the association between mental health and nonadherence to immune-modifying therapy during the pandemic. To assess the extent of and reasons underlying nonadherence to systemic immune-modifying therapy during the COVID-19 pandemic in individuals with psoriasis, and the association between mental health and nonadherence. Online self-report surveys (PsoProtectMe), including validated screens for anxiety and depression, were completed globally during the first year of the pandemic. We assessed the association between anxiety or depression and nonadherence to systemic immune-modifying therapy using binomial logistic regression, adjusting for potential cofounders (age, sex, ethnicity, comorbidity) and country of residence. Of 3980 participants from 77 countries, 1611 (40.5%) were prescribed a systemic immune-modifying therapy. Of these, 408 (25.3%) reported nonadherence during the pandemic, most commonly due to concerns about their immunity. In the unadjusted model, a positive anxiety screen was associated with nonadherence to systemic immune-modifying therapy [odds ratio (OR) 1.37, 95% confidence interval (CI) 1.07-1.76]. Specifically, anxiety was associated with nonadherence to targeted therapy (OR 1.41, 95% CI 1.01-1.96) but not standard systemic therapy (OR 1.16, 95% CI 0.81-1.67). In the adjusted model, although the directions of the effects remained, anxiety was not significantly associated with nonadherence to overall systemic (OR 1.20, 95% CI 0.92-1.56) or targeted (OR 1.33, 95% CI 0.94-1.89) immune-modifying therapy. A positive depression screen was not strongly associated with nonadherence to systemic immune-modifying therapy in the unadjusted (OR 1.22, 95% CI 0.94-1.57) or adjusted models (OR 1.14, 95% CI 0.87-1.49). These data indicate substantial nonadherence to immune-modifying therapy in people with psoriasis during the pandemic, with attenuation of the association with mental health after adjusting for confounders. Future research in larger populations should further explore pandemic-specific drivers of treatment nonadherence. Clear communication of the reassuring findings from population-based research regarding immune-modifying therapy-associated adverse COVID-19 risks to people with psoriasis is essential, to optimize adherence and disease outcomes
Multi-objective optimization of solar power tower hybridization with gas turbine and thermal energy storage back up
This work assesses the performance of solar power tower technology with both fossil fuel and renewable energy-based backup systems. The probable effects of aerosols on this type of concentrated solar power in arid regions are measured prior to the hybridization with the fossil fuel backup which is to compensate any energy losses due to the density of aerosols. The assessment is based on a multi-objective optimization approach where key design parameters of the solar power tower such as the thermal energy storage capacity and the solar field size are considered as variables. The performance of the solar power tower is evaluated using the System Advisor Model simulation tool while that of the gas turbine is evaluated by Aspen Plus. The hybridization of both technologies is obtained using an in-house developed algorithm. The multi-objective optimization is realized with the assistance of the Non-dominated Sorted Genetic Algorithm II where the conflicting objective functions of lowest levelized cost of energy, highest annual energy generation, highest capacity factor and lowest CO2 emissions are targeted. The optimization targets the best techno-economic configuration among the various possible scenarios which potentially can fulfill Kuwait's 2035 vision of renewable energy adoption with the exploitation of existing natural resources. The assessment considers the already assigned renewable energy site of Shagaya as a case study location
Multi-temporal resolution aerosols impacted techno-economic assessment of concentrated solar power in arid regions : case study of solar power tower in Kuwait
This work evaluates the Solar Power Tower performance in arid regions where elevated aerosols levels and water scarcity threaten solar applications feasibility. The work conducts an aerosols aware modelling and techno-economic assessment by considering possible aerosols effects on the solar field’s reflected irradiance; an effect that is typically ignored in the literature. Aerosols effect inclusion’s modifies the thermal input to the solar field and this, in turn, provides a more accurate assessment. A parametric analysis has been performed using a 50 MW model by varying the Thermal Energy Storage and Solar Multiple based on three aerosols temporal resolutions: a typical year’s average, daily and no-aerosols schemes. Further, water consumption is examined over four different condenser scenarios: dry, wet and two hybrid set ups. The assessment performed in Kuwait reveals that the wet-cooled condenser scenario with a 16h of storage and a solar multiple of 3.2 yields the lowest Levelized Cost of Energy of 12.06 /kWh when the daily aerosols are considered as the generated energy decreases by 6.7%. Besides, both hybrid condenser scenarios offer a trade-off as they result in a 55.1–68.7% of water saving for only 2.1–2.3% less energy generation
Recommended from our members
Local structure of Mott insulating iron oxychalcogenides La2 O2Fe2 OM2(M= S, Se)
We describe the local structural properties of the iron oxychalcogenides, La2O2Fe2OM2(M=S,Se), by using pair distribution function analysis applied to total scattering data. Our results from neutron powder diffraction show that M = S and Se possess similar nuclear structures at low and room temperatures. The local crystal structures were studied by investigating deviations in atomic positions and the extent of the formation of orthorhombicity. Analysis of the total scattering data suggests that buckling of the Fe2O plane occurs below 100 K. The buckling may occur concomitantly with a change in octahedral height. Furthermore, within a typical range of 1-2 nm, we observed a short-range orthorhombiclike structure suggestive of nematic fluctuations in both of these materials