17 research outputs found

    Heat conduction in graphene flakes with inhomogeneous mass interface

    Full text link
    Using nonequilibrium molecular dynamics simulations, we study the heat conduction in graphene flakes composed by two regions. One region is mass-loaded and the other one is intact. It is found that the mass interface between the two regions greatly decreases the thermal conductivity, but it would not bring thermal rectification effect. The dependence of thermal conductivity upon the heat flux and the mass difference ratio are studied to confirm the generality of the result. The interfacial scattering of solitons is studied to explain the absence of rectification effect.Comment: 5 pages, 4 figure

    Thermal rectification in asymmetric U-shaped graphene flakes

    Get PDF
    In this paper, we study the thermal rectification in asymmetric U-shaped graphene flakes by using nonequilibrium molecular dynamics simulations. The graphene flakes are composed by a beam and two arms. It is found that the heat flux runs preferentially from the wide arm to the narrow arm which indicates a strong rectification effect. The dependence of the rectification ratio upon the heat flux, the length and the width of the beam, the length and width of the two arms are studied. The result suggests a possible route to manage heat dissipation in U-shaped graphene based nanoelectronic devices.Comment: 3 pages, 4 figure

    Maximal rectification ratios for idealized bi-segment thermal rectifiers

    Get PDF
    Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal κ(max)/κ(min), where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers
    corecore