156 research outputs found

    HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas

    Get PDF
    Abstract Background Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then, MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived B-lymphcytes for its potential clinical use. Results Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay, Annexin V/PI, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell death. Using a cell free autoubiquitination assay, neither agent interfered with HDM2 E3 ligase function. MI-219 was more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the autoubiquitination and degradation of HDM2. Conclusions Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2 through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to biological outcome. Our results provide evidence that different classes of HDM2 SMIs elicit molecular events that extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance

    Primary Cutaneous B-Cell Lymphomas

    Get PDF
    Primary cutaneous B-cell lymphomas (PCBCL) are a heterogeneous group of mature B-cells neoplasms that present in the skin without evidence of nodal or systemic involvement. The clinical and pathologic features of PCBCL differ significantly from the equivalent nodal lymphomas. Three main subtypes of PCBCL are recognized by the 2016 revised WHO classification. Studies have shown that PCBCLs are characterized by distinct immunophenotypic features, chromosomal aberrations and gene rearrangements which provide further support for their classification as separate entities from their nodal types

    I-kappa-kinase-2 (IKK-2) inhibition potentiates vincristine cytotoxicity in non-Hodgkin\u27s lymphoma

    Get PDF
    Abstract Background IKK-2 is an important regulator of the nuclear factor-κB (NF-κB) which has been implicated in survival, proliferation and apoptosis resistance of lymphoma cells. In this study, we investigated whether inhibition of IKK-2 impacts cell growth or cytotoxicity of selected conventional chemotherapeutic agents in non-Hodgkin\u27s lymphoma. Two established model systems were used; Follicular (WSU-FSCCL) and Diffuse Large Cell (WSU-DLCL2) Lymphoma, both of which constitutively express p-IκB. A novel, selective small molecule inhibitor of IKK-2, ML120B (N-[6-chloro-7-methoxy-9H-β-carbolin-8-yl]-2-methylnicotinamide) was used to perturb NF-κB in lymphoma cells. The growth inhibitory effect of ML120B (M) alone and in combination with cyclophosphamide monohydrate (C), doxorubicin (H) or vincristine (V) was evaluated in vitro using short-term culture assay. We also determined efficacy of the combination in vivo using the SCID mouse xenografts. Results ML120B down-regulated p-IκBα protein expression in a concentration dependent manner, caused growth inhibition, increased G0/G1 cells, but did not induce apoptosis. There was no significant enhancement of cell kill in the M/C or M/H combination. However, there was strong synergy in the M/V combination where the vincristine concentration can be lowered by a hundred fold in the combination for comparable G2/M arrest and apoptosis. ML120B prevented vincristine-induced nuclear translocation of p65 subunit of NF-κB. In vivo, ML120B was effective by itself and enhanced CHOP anti-tumor activity significantly (P = 0.001) in the WSU-DLCL2-SCID model but did not prevent CNS lymphoma in the WSU-FSCCL-SCID model. Conclusions For the first time, this study demonstrates that perturbation of IKK-2 by ML120B leads to synergistic enhancement of vincristine cytotoxicity in lymphoma. These results suggest that disruption of the NF-κB pathway is a useful adjunct to cytotoxic chemotherapy in lymphoma

    irrespective of

    Get PDF
    their proliferative and differentiation statu

    New targets for the treatment of follicular lymphoma

    Get PDF
    The last two decades have witnessed striking advances in our understanding of the biological factors underlying the development of Follicular lymphoma (FL). Development of newer treatment approaches have improved the outlook for many individuals with these disorders; however, with these advances come new questions. Given the long-term survival of patients with FL, drugs with favourable side-effect profile and minimal long-term risks are desired. FL is incurable with current treatment modalities. It often runs an indolent course with multiple relapses and progressively shorter intervals of remission. The identification of new targets and development of novel targeted therapies is imperative to exploit the biology of FL while inherently preventing relapse and prolonging survival. This review summarizes the growing body of knowledge regarding novel therapeutic targets, enabling the concept of individualized targeted therapy for the treatment of FL

    Machine humour: examples from Turing test experiments

    Get PDF
    In this paper, we look at the possibility of a machine having a sense of humour. In particular, we focus on actual machine utterances in Turing test discourses. In doing so, we do not consider the Turing test in depth and what this might mean for humanity, rather we merely look at cases in conversations when the output from a machine can be considered to be humorous. We link such outpourings with Turing’s “arguments from various disabilities” used against the concept of a machine being able to think, taken from his seminal work of 1950. Finally we consider the role that humour might play in adding to the deception, integral to the Turing test, that a machine in practice appears to be a human

    Preclinical studies of Apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model

    Get PDF
    Elevated expression of anti-apoptotic Bcl-2 family proteins have been linked to a poor survival rate of patients with Follicular Lymphoma (FL). This prompted us to evaluate a very potent non-peptidic Small-Molecule Inhibitor (SMI) targeting Bcl-2 family proteins, Apogossypolone (ApoG2) using follicular small cleaved cell lymphoma cell line (WSU-FSCCL) and cell isolated from lymphoma patients. ApoG2 inhibited the growth of WSU-FSCCL significantly with a 50% growth inhibition of cells (IC50) of 109 nM and decreased cell number of fresh lymphoma cells. ApoG2 activated caspases-9, -3, and -8, and the cleavage of Poly (ADP-ribose) polymerase (PARP) and Apoptosis Inducing Factor (AIF). In the WSU-FSCCL-SCID xenograft model, ApoG2 showed a significant anti-lymphoma effect, with %ILS of 84% in the intravenous and 63% in intraperitoneal treated mice. These studies suggest that ApoG2 can be an effective therapeutic agent against FL

    Preclinical studies of Apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-X\u3csub\u3eL \u3c/sub\u3eand Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model

    Get PDF
    Abstract Elevated expression of anti-apoptotic Bcl-2 family proteins have been linked to a poor survival rate of patients with Follicular Lymphoma (FL). This prompted us to evaluate a very potent non-peptidic Small-Molecule Inhibitor (SMI) targeting Bcl-2 family proteins, Apogossypolone (ApoG2) using follicular small cleaved cell lymphoma cell line (WSU-FSCCL) and cell isolated from lymphoma patients. ApoG2 inhibited the growth of WSU-FSCCL significantly with a 50% growth inhibition of cells (IC50) of 109 nM and decreased cell number of fresh lymphoma cells. ApoG2 activated caspases-9, -3, and -8, and the cleavage of Poly (ADP-ribose) polymerase (PARP) and Apoptosis Inducing Factor (AIF). In the WSU-FSCCL-SCID xenograft model, ApoG2 showed a significant anti-lymphoma effect, with %ILS of 84% in the intravenous and 63% in intraperitoneal treated mice. These studies suggest that ApoG2 can be an effective therapeutic agent against FL

    An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MI-319 is a synthetic small molecule designed to target the MDM2-P53 interaction. It is closely related to MDM2 antagonists MI-219 and Nutlin-3 in terms of the expected working mechanisms. The purpose of this study was to evaluate anti-lymphoma activity of MI-319 in WSU-FSCCL, a B-cell follicular lymphoma line. For comparison purpose, MI-319, MI-219 and Nutlin-3 were assessed side by side against FSCCL and three other B-cell hematological tumor cell lines in growth inhibition and gene expression profiling experiments.</p> <p>Results</p> <p>MI-319 was shown to bind to MDM2 protein with an affinity slightly higher than that of MI-219 and Nutlin-3. Nevertheless, cell growth inhibition and gene expression profiling experiments revealed that the three compounds have quite similar potency against the tumor cell lines tested in this study. <it>In vitro</it>, MI-319 exhibited the strongest anti-proliferation activity against FSCCL and four patient cells, which all have wild-type p53. Data obtained from Western blotting, cell cycle and apoptosis analysis experiments indicated that FSCCL exhibited strong cell cycle arrest and significant apoptotic cell death; cells with mutant p53 did not show significant apoptotic cell death with drug concentrations up to 10 μM, but displayed weaker and differential cell cycle responses. In our systemic mouse model for FSCCL, MI-319 was tolerated well by the animals, displayed effectiveness against FSCCL-lymphoma cells in blood, brain and bone marrow, and achieved significant therapeutic impact (p < 0.0001) by conferring the treatment group a > 28% (%ILS, 14.4 days) increase in median survival days.</p> <p>Conclusion</p> <p>Overall, MI-319 probably has an anti-lymphoma potency equal to that of MI-219 and Nutlin-3. It is a potent agent against FSCCL <it>in vitro </it>and <it>in vivo </it>and holds the promises to be developed further for the treatment of follicular lymphoma that retains wild-type p53.</p
    corecore