DIGITALCOMMONS

— @WAYNESTATE— Wayne State University

Wayne State University Associated BioMed Central Scholarship

2012

HDM?2 antagonist MI-219 (spiro-oxindole), but
not Nutlin-3 (cis-imidazoline), regulates p53
through enhanced HDM2 autoubiquitination and
degragation in human malignant B-cell lymphomas

Angela M. Sosin
Department of Oncology, Barbara Ann Karmanos Cancer Institute (KCI), asosin@med.wayne.edu

Angelika M. Burger
Department of Pharmacology, Wayne State University School of Medicine (WSU-SOM), maryann.rubio@stjohn.org

Aisha Siddiqi
Department of Oncology, Barbara Ann Karmanos Cancer Institute (KCI), aishasiddiqi248 @gmail.com

Judith Abrams
Biostatistics Core Facility (KCI), abramsj@karmanos.org

Ramzi M. Mohammad

Department of Oncology, Barbara Ann Karmanos Cancer Institute (KCI), mohammar@karmanos.org

See next page for additional authors

Recommended Citation

Sosin et al. Journal of Hematology & Oncology 2012, 5:57
doi:10.1186/1756-8722-5-57

Available at: http://digitalcommons.wayne.edu/biomedcentral /27

This Article is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in Wayne State University
Associated BioMed Central Scholarship by an authorized administrator of Digital Commons@WayneState.


http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/biomedcentral
http://dx.doi.org/10.1186/1756-8722-5-57

Authors
Angela M. Sosin, Angelika M. Burger, Aisha Siddiqi, Judith Abrams, Ramzi M. Mohammad, and Ayad M. Al-
Katib

This article is available at Digital Commons@WayneState: http://digitalcommons.wayne.edu/biomedcentral /27


http://digitalcommons.wayne.edu/biomedcentral/27

Sosin et al. Journal of Hematology & Oncology 2012, 5:57

http://www.jhoonline.org/content/5/1/57 JOURNAL OF HEMATOLOGY
& ONCOLOGY

RESEARCH Open Access

HDM2 antagonist MI-219 (spiro-oxindole), but not
Nutlin-3 (cis-imidazoline), regulates p53 through
enhanced HDM2 autoubiquitination and
degradation in human malignant B-cell
lymphomas

Angela M Sosin', Angelika M Burger?, Aisha Siddigi', Judith Abrams®, Ramzi M Mohammad'
and Ayad M Al-Katib®*"

Abstract

Background: Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby
compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of
disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are
under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of
MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then,
MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and
mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived
B-lymphcytes for its potential clinical use.

Results: Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and
compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative
PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay,
Annexin V/PIl, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more
delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell
death. Using a cell free autoubiquitination assay, neither agent interfered with HDM?2 E3 ligase function. MI-219 was
more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the
autoubiquitination and degradation of HDM2.

Conclusions: Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma
cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2
through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to
biological outcome. Our results provide evidence that different classes of HDM2 SMis elicit molecular events that
extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance.
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Background

The estimated number of newly diagnosed non-
Hodgkin’s lymphoma cases for 2012 is expected to be
70,130 of which 18,940 patients (27%) will fail to survive.
This represents a 9.89% increase in diagnosed cases
compared to that estimated in 2007. While the expected
mortality has marginally decreased from 29.5% in 2007
to 27% in 2012, there is reason for optimism but no rea-
son to celebrate until a complete cure is found [1,2]. Un-
like solid tumors which could be treated in situ or
removed if diagnosed early, lymphoma cells circulate
alongside with normal lymphocytes making treatment
options limited. However, the inherent defects within
the cells that initiate transformation of normal cells into
cancer are similar, as are the mechanisms evading cell
death and development of resistance.

One of the most recognized defects is altered func-
tionality of p53, the protein product of the TP53 gene
[3]. p53, often considered guardian of genome, is a mas-
ter transcriptional regulator at the center of complex
molecular networks controlling cell proliferation and
death. Therefore, the integrity of functional wild-type
p53 (wt-p53) tumor suppressor activity is a vital compo-
nent of normal cellular homeostasis and protection from
cancer development. p53 is activated in response to mul-
tiple stress signals and activated p53 induces genes
involved in biological outcomes such as apoptosis, cell
cycle arrest, DNA repair, senescence, and more recently,
metabolism [4-6]. Deregulation of p53 by inactivating
mutations occurs in approximately 50% of all human
cancers, impairing DNA binding and transcription of
tumor suppressive target genes [7]. Tumors that possess
a mutant p53 (mt-p53) have been shown to evade apop-
tosis, resist many therapeutic interventions, and exhibit
qualities associated with poor prognosis [8-11]. There-
fore, maintaining functional wt-p53 activity is central to
favorable treatment outcomes in cancer.

Numerous posttranslational mechanisms exist to con-
trol p53 activity and ultimately determine its cellular
fate. HDM2 (Human Double Minute 2) is a RING finger
E3-ubiquitin ligase that acts as the predominant negative
regulator of p53. HDM2 is also a transcriptional target
gene of p53, creating an autoregulatory feedback loop
that regulates p53 activity and stability. HDM2 binds to
p53, inactivates its transcriptional activity and facilitates
ubiquitin-dependent degradation of p53 by exporting
it out of the nucleus [12-14]. Furthermore, p53-
independent functions of HDM2 exist and may be influ-
enced through interaction with additional proteins [15].
In addition to its role in regulating functional p53 activ-
ity, HDM2 is also capable of self-regulation via autoubi-
quitination and is thought to degrade itself by means of
the proteasome [16,17]. Although this self-regulatory
function of HDM2 is well-documented, the control and
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activation of this function still remains highly elusive.
Importantly, HDM2 destabilization is required for
proper p53 response. In fact, an early step in the accu-
mulation of p53 in response to stress, DNA damage in
particular, is an associated increase in HDM2 autoubi-
quitination and degradation [18,19].

Overexpression of HDM2 has been shown to facilitate
cancer development and progression in several tumor
types and is often found in hematological malignancies.
It is observevd more frequently in low grade non-
Hodgkin’s lymphomas (NHL) (56.5%) than in aggressive
NHL (10.8%), with HDM2 elevated even further in
patients with advanced clinical stage [20]. Abnormal ex-
pression of HDM2 has also been detected in Hodgkin
lymphomas (HL) [21]. However, little is known about
the prognostic value of HDM2 in lymphomas. Several
non-genotoxic small-molecule inhibitors (SMIs) have
been developed to block HDM2-p53 with attempts to
restore tumor suppressive activity to tumor cells with
wt-p53. This is an attractive therapeutic strategy [22],
particularly in lymphomas, where p53 mutations ac-
count for less than 15% of all cases [23,24], yet wt-p53
remains dysfunctional due to overexpressed HDM2.

Although preclinical assessment of several HDM2
SMIs have demonstrated great promise, it is becoming
increasingly clear that multiple molecular mechanisms
modulate their anti-cancer efficacy in conjunction with
genetic components of the patient’s tumor. More im-
portantly, novel HDM2 SMIs are currently under clinical
evaluation in phase I studies, demonstrating the signifi-
cant impact and clinical relevance of these agents [25].
We previously reported the anti-lymphoma effects of a
laboratory grade spiro-oxindole MI-319, in our estab-
lished WSU-FSCCL cell line and xenograft model [26].
Since then, the clinical grade MI-219 has become readily
available. In this study, we assessed the preclinical po-
tential of MI-219 and re-examined selected molecular
consequences associated with HDM?2 inhibition in
lymphoma cell lines and a cohort of malignant patient-
derived B-lymphocytes. Our data uncovers unexpected
differences between MI-219 compared to archetypical
Nutlin-3. The results suggest a crucial role of mediating
enhanced HDM2 activity towards itself, in conjunction
with wt-p53 reactivation, which affects MI-219 sensitiv-
ity in this tumor type. More in-depth understanding of
how HDM2 SMIs impact the myriad of biological pro-
cesses conducted by p53 in lymphoma cells is necessary
in order to in maximize their therapeutic exploitation.

Results

Characteristics of patient sample

To extend our findings previously investigated [26], we
determined the efficacy of MI-219 and Nutlin-3 in a
number of fresh lymphoma patient samples ex vivo.
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Over the course of 3 years (2009-2011), analyzable
tumor samples obtained from peripheral blood of 11
patients with B-cell lymphoma in leukemic phase were
enriched and exposed to increasing concentrations of
MI-219 or Nutlin-3 for up to 72 h. Priority of assays per-
formed was dependent upon the total number of avail-
able isolated and purified cells and was carried out in
the following order: chromosomal karyotyping > deter-
mination of p53 status(wild-type [wt] or mutant [mt]) >
cell viability post-exposure to Nutlin-3 or MI-
219 > Western blot detection of selected p53 target pro-
teins of treated cells. Patient characteristics are shown
in Table 1. Eight patients had been clinically diagnosed
with small lymphocytic lymphoma (SLL)/chronic
lymphocytic leukemia (CLL) and three with marginal
zone lymphoma (MZL). Male: female ratio was 5: 6; and
median age was 69 years (range 62-86). Of the eight
SLL/CLL patients, six exhibited 13q- and the remaining
two expressed trisomy 12. All patients, except one (pa-
tient #9) exhibited wt-p53. Patient # 9, with 17p-
chromosomal abnormality detected in 9% of cells con-
tained a p53 mutation (Lys132Arg). The group of 11
patients represents indolent non-Hodgkin’s lymphoma
associated with a lengthy disease course of slowly prolifer-
ating lymphoma cells which eventually leads to enlarge-
ment of lymph nodes (lymphadenopathy) and bone
marrow failure (manifested as anemia, thrombocytopenia
and/or neutropenia) secondary to bone marrow replace-
ment by the lymphoma cells thereby inhibiting bone mar-
row function. No patient was being actively treated at the
time of this study; although several patients had been pre-
viously treated.

Table 1 Characteristics of lymphoma patient samples
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Effect of HDM2 inhibition in patient-derived B lymphoma
cells

Enriched primary B-lymphocytes were analyzed for cell via-
bility. Both MI-219 and Nutlin-3 induced concentration-
and time-dependent decreases in cell viability in isolated
and purified primary lymphoma cells. A comprehensive
biostatistical analysis was performed on n =11 lymphoma
patient samples to determine whether there were signifi-
cant differences between Nutlin-3 and MI-219 and the
extent of their effects on cell viability. The mean cell sur-
vival for each combination of drug, concentration, and
time is shown in Figure 1 along with standard errors. The
results demonstrate that overall, MI-219 is significantly
more effective (p <0.001) at reducing the cell viability of
primary lymphoma cells than Nutlin-3.

HDM?2 inhibitors activate the p53 pathway in primary
lymphoma cells. Both Nutlin-3 and MI-219 induced
variable HDM2, p53 and p21 protein expression in puri-
fied patient-derived B-lymphocytes (Figure 2). Of special
interest is the observation that MI-219, but not Nutlin-3,
induced both higher and lower molecular weight species
of HDM2. These molecular changes were best captured
at 24 h and Western blots for 3 patients with SLL/CLL
and 1 with MZL lymphoma are shown in Figure 2A. A
statistical analysis summary for changes in the induction
of p53-target proteins following exposure to HDM2
SMIs in patient samples is shown in Figure 2B. Cumula-
tively, MI-219 was more effective than Nutlin-3
(p=0.001) in the upregulation of p53, p21, and HDM2
protein levels in primary B-lymphoma cells. At 24 h, ex-
pression of p53 protein was significantly induced with
MI-219 compared to Nutlin-3 at all concentrations and

Patient# AGE SEX RACE TYPE OF LYMPHOMA CYTOGENETICS/KARYOTYPE p53 status Exons
5-9 (cDNA)
1 62 M Caucasian MZL Normal/46,XY [23] wt
2 76 M Caucasian SLL/CLL 84.5%-trisomy 12 wt
15.5%- deletion of 17p
11%-loss of IgH locus
3 86 M Caucasian MZL Normal/46, XY [23] wt
4 71 F Caucasian SLL/CLL 67.5%-trisomy 12 wt
5 64 F African-American SLL/CLL 86.5%-deleted 13q wt
6 72 M Caucasian MZL 45%-1(2;7)(p12,021-22) wit
7 64 F Caucasian SLL/CLL 54.5%- deleted 13q wt
8 81 F Caucasian SLL/CLL 58.5%- deleted 13q wt
9 69 F Caucasian SLL/CLL 51%- deleted 13q mt
9%- deleted 17p (Lys132Arq)
10 62 M Caucasian SLL/CLL 23.5%- deleted 13q wt
26%-31gH copies
1 69 F Caucasian SLL/CLL 72%- deleted 13q wt
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Figure 1 Reduction of cell survival in patient-derived lymphoma cells exposed to HDM2 SMls. Box plots show percent survival compared
to control for isolated primary lymphoma cells following exposure to increasing concentrations of MI-219 and Nutlin-3 at indicated time points.
Survival is expressed as a percentage of live cells detected by Trypan blue exclusion relative to the total number of cells from each of the 11
patients ranging from 2 to 6 replicates per patient. The horizontal lines within the boxes represent the median while the upper and lower lines of
the box endorse the 25th and 75th interquartile range (IQR). The upper- and lower-most lines extend to cover points within 1.5 times the IQR
and circles outside of the lines indicate outliers. A mixed effects analysis of variance was used where the drug, concentration and time were
defined as fixed effects; patient and replication were defined as random effects. Holm’s procedure was used to adjust for multiple comparisons.

Significant overall differences between MI-219 and Nutlin-3 treatments were observed (p < 0.001).

was the largest contributor to the overall significant dif-
ference between the two treatments (Figure 2B).

Induction of apoptotic cell death in wt-p53 lymphoma

cell lines

A series of experiments were performed using both
HDM2 SMIs in two wt-p53 and two mt-p53 lymphoma
cell lines. As expected, cell death of mt-p53 cell lines RL
and WSU-DLCL, were not significantly affected by expos-
ure to either HDM2 SMI at concentration up to 10 uM
(Figure 3). In wt-p53 WSU-FSCCL and KM-H2 cells, the
overall effect of MI-219-induced cell death was signifi-
cantly greater than that of Nutlin-3. This was seen as early
as 24 h following initiation of treatment (p =0.0001). The
apoptotic effect was more evident in the non-Hodgkin’s
lymphoma WSU-FSCCL cell line than in the Hodgkin
lymphoma KM-H2 cell line. MI-219 treatment in WSU-
FSCCL cells led to complete elimination of cells at the
end of 72 h at 5 pM and 10 uM concentrations unlike that
seen with Nutlin-3 treatment at equivalent concentrations.
An increase in the percentage of Annexin V positively
stained cells over time reflected the decrease in viability
for cell lines expressing wt-p53 (Figure 3; shown as Mean
only because of space restriction). A summary of the
Annexin V positive data for both wt-p53 cell lines is pre-
sented in Table 2.

Data shown in Figure 4A, indicate that neither HDM?2
SMI significantly affected the viability of B-lymphocytes
derived from normal donors exposed for up to 48 h. The
inactive Nutlin-3 enantiomer, Nutlin-3b, did not show
any significant reduction in the cell viability of cell lines,
demonstrating the selectivity of each HDM2 SMI
(Figure 4B).

Evaluation of p53 and p53-dependent target proteins
HDM2 inhibitors upregulate expression of p53-
dependent target proteins in wt-p53 cell lines after 24 h
(Figure 5). Similar to that observed in patient’s samples,
this time point best captured the differences between
treatments and demonstrated the effects of MI-219 and
Nutlin-3 in modifying the expression of p53, p21,
cleaved PARP, cleaved Caspase-3 and Caspase-9 in wt-
p53 cell lines. Once again, differences in response to
these HDM2 SMIs were evident between the two wt-p53
cell lines (Figure 5A1 and A2). Of note, there was little
change in p53 or p21 protein levels in mt-p53 cells
(WSU-DLCL, and RL) and did not show major evidence
of PARP and Caspase-3 cleavage (Figure 5B1 and B2).
These results show that HDM2 SMIs cannot effectively
restore p53 activity to mt-p53 cell lines.

To wunderstand a possible explanation for the
enhanced activity of MI-219 over that of Nutlin-3, we
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Figure 2 Upregulation of p53 protein predicts efficacy and biological response to MI-219 in primary lymphoma cells. A) Western blots
of the upregulation of p53 and its target proteins upon HDM2 inhibition after 24 h in primary lymphoma cells isolated from four patients. B) Box
plots show the cumulative biostatistical analyses of p53 target protein expression levels to estimate response predictors to HDM2 SMs in primary
B-lymphocytes isolated from lymphoma patients (n=10). Western blots for each patient (n=10) for each drug, dose, and time point for each
protein detected. Quantification of Western blot bands (relative density) was calculated using ImageJ and normalized to internal control (GAPDH).
Fold increase or decrease was calculated by standardizing each treatment as a ratio to the control. MI-219 is statistically more effective than
Nutlin-3 (p=0.001) overall regardless of p53 target protein or time point when main effects for drug, concentration, protein and time were fitted
without interactions. Upregulation of p53 was statistically greater upon exposure to MI-219 than for Nutlin-3 at 24 h for equivalent concentration;
2.5 UM [*p=0.05]; 5.0 uM [***p=0.02] and 10 uM [**p=0.03] shown in Figure 2-Bb).

determined the IC5os of the HDM2 SMIs using viable
cell count as the endpoint in cultures of wt-p53 cell
lines (WSU-FSCCL and KM-H2) at equal concentra-
tions for both HDM2 inhibitors. Although the ICsgs at
48 h were similar for both agents in wt-p53 WSU-FSCCL
cells (2.5 pM for MI-219 and 3 pM for Nutlin-3), the
ICs0s were significantly different in wt-p53 KM-H2 cells
(3 uM for MI-219 and 8 uM for Nutlin-3).

HDM2 inhibition enhances the posttranslational stability
of p53

HDM2 inhibition is hypothesized to increase p53 stabil-
ity by reducing HDM2-mediated degradation. However,
p53 stability could also be the result of enhanced p53
protein translation. To demonstrate that upregulation of
p53 protein expression shown in the Western blots were
the result of HDM2 inhibition by SMIs, the half-life of
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(See figure on previous page.)

experiments.

Figure 3 Biological response of lymphoma cell lines to HDM2 SMis. Nutlin-3 (Red bars) and MI-219 (Blue bars) represent cell viability for 4
cell lines exposed to increasing concentrations of HDM2 SMis for up to 72 h. Comparison for overall differences across equivalent concentrations
were significant between the two HDM2 SMis (ANOVA; p=0.001) for each time period (24 to 72 h) in both wt-p53 cell lines. Numerical values
located under the graphs represent percentage of Annexin V positive cells for Nutlin-3 (red print) and MI-219 (blue print). MI-219- induced
increases in Annexin V positive WSU-FSCCL cells at 24 and 48 h was significantly greater than that for Nutlin-3 (p=0.0001) within the same cell
line. For KM-H2 cells, the difference was significant only at 24 h (p=0.026). Columns and error bars represent Mean + S.D. of three independent

p53 was monitored. The inhibition of protein synthesis
by treatment with 50 uM CHX alone led to a marked
decrease of p53 protein expression over time. Blocking
protein translation with CHX decreased the turnover of
endogenous p53 (Time 0-2 h; ~t1/2=0.68 h) (Figure 6).
Furthermore, addition of 10 uM of the proteasome in-
hibitor MG132 alone ameliorates the degradation of
p53, thereby enhancing its stabilization.

Treatment with 10 pM Nutlin-3 or 10 uM MI-219
alone for 24th led to an overall increase in p53 protein
expression. Whether p53 stability is related to HDM2 in-
hibition was evaluated by pre-incubation of 10 pM

Nutlin-3 or MI-219 for 24 hours in wt-p53 WSU-FSCCL
cells followed by treatment with 50 uM CHX at the indi-
cated time points. Blocking protein synthesis after pre-
treatment with HDM2 SMI led to an overall increase in
p53 protein expression. Intriguingly, MI-219 treatment
was more effective in enhancing p53 stability than
Nutlin-3. Pre-treatment with 10 uM Nutlin-3 barely
extended the p53 stability in the presence of CHX com-
pared to 10 pM Nutlin-3 alone (Time 0-2 h;~ t1/2
=0.86 h) (Figure 6B1) whereas 10 uM MI-219 greatly
enhanced the overall stabilization of p53 protein despite
the presence of CHX (Figure 6B2).

Table 2 Summary of Annexin positive cells in wtp-53 lymphoma cell lines exposed to HDM2-SMls

Cell line Time (h) Conc. (uM) Nutlin-3 MI-219 ANOVA p?® Post-hoc pb
WSU-FSCCL 12 h 0 53+07 53+07 p=<0.001 -
25 70£25 13713 p=<0.001
5.0 88+20 238+28 p=<0.001
10.0 106£1.7 36.1+£23 p=<0.001
24 h 0 62+0.7 6.0+0.7 p =<0.0001 -
25 96+16 276+82 NS
50 123+£24 430£186 p=<0.01
10.0 173+49 69.7+6.6 p=<0.001
48 h 0 6.1£12 6.1£12 p =<0.0001 -
25 10.1+£0.7 195+£1.0 NS
50 126+£19 356176 p=<0.001
100 165+26 745+49 p=<0.001
KM-H2 12 h 0 79+12 79+12 p=0.026 -
25 112£16 12513 NS
50 11.8+15 13506 NS
100 136124 148+29 NS
24 h 0 89+17 89+17 p=0.026 -
25 11.2+£30 142+25 NS
50 145+30 199+35 NS
10.0 201+£38 279+48 p=0.05
48 h 0 28£25 128+25 NS
25 159+£65 19.7+£94
50 189+89 23.1+10
10.0 21.1£97 324+92

2 ANOVA for overall significance between all groups. > Tukey's post hoc comparisons between pairs (Nutlin-3 versus MI-219 at equivalent concentrations).
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Figure 4 Effect of HDM2 inhibition in normal B-lymphocytes
derived from healthy donors. A) Isolated B-lymphocytes from
normal donors were exposed to HDM2 SMIs for up to 48 h. Neither
HDM2 SMI induced a significant decrease in cell viability compared
to untreated cells (control). B) The inactive Nutlin-3 analog,
Nutlin-3b, was ineffective in significantly decreasing cell viability in
all 4 cell lines for up to 72 h. Columns and error bars represent
Mean £ S.D. of three independent experiments.

HDM2 inhibition upregulates p53-dependent genes in
wt-p53 lymphoma cell lines

To investigate the effects of HDM2 inhibition on p53
transcriptional regulation, we assessed the effect of SMI-
mediated reactivity of p53 to enhance target gene ex-
pression levels using qRT-PCR. Additionally, we wanted
to determine whether the increase in p53 was the result
of newly transcribed p53 mRNA or the accumulation of
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p53 resulting from the HDM2-p53 disruption. Wt-p53
WSU-FSCCL cells exhibited increases in p53-target
genes HDM2, p21, p53AIP1 upon HDM2 inhibition
compared to control cells albeit with variable kinetics
The results are presented in Figure 7. Of particular im-
portance is that there was virtually no upregulation of
p53 mRNA transcripts after treatment with HDM2 SMIs
at 24 h, suggesting stabilized p53 protein is the result of
HDM2 SMIs and not due to enhanced mRNA tran-
scribed into protein. Interestingly, p53 transcripts
mRNA increased 29-fold at 48 h in cells exposed to
10 uM MI-219 compared to a 2.5-fold increase in cells
exposed to 10 pM Nutlin-3 for the same time period.
Overall, MI-219 treatment demonstrated a surprisingly
greater induction of p53-target genes compared to
Nutlin-3. There was much higher and more sustained
induction of HDM2 mRNA by MI-219 compared with
Nutlin-3. Effect on HDM2 transcript peaked at 12 hours
but was still remarkable at 24 hour in MI-219-treated
cells. Both agents induced upregulation of p21 mRNA in
WSU-FSCCL cells with overall higher induction by
Nutlin-3 compared with MI-219. However, MI-219 ef-
fect was more evident at the earlier time points (12 and
24 hours) and at lower concentrations (2.5 and 5 pM)
compared with Nutlin-3. The later induced a delayed in-
duction (48 hours) of p2ImRNA. p21 mRNA was
increased up to 65-fold at 48 h in cells exposed to
10 uM MI-219 but was increased up to 252-fold at the
same time period in cells exposed to 10 pM Nutlin-3.
MI-219 was more effective than Nutlin-3 in inducing
p53AIP1 mRNA, indicating greater induction of p53-
dependent apoptosis genes.

MI-219, but not Nutlin-3, enhances HDM2-medicated
autoubiquitination and degradation

Neither class of agents inhibited the E3 ligase function
of HDM2 in a cell-free ubiquitination assay (Figure 8A).
Autoubiquitination of recombinant His-HDM2 was not
inhibited by the addition of Nutlin-3, MI-219 or MI-319
(laboratory grade MI-219) at IC50 or even at much
higher (50 puM) concentrations for 1.5 h. Disulfiram
(10 uM) completely abrogated autoubiquitination and
was included as a negative control.

Identification of HDM2 degraded species from WSU-
FSCCL cells was confirmed by immunoprecipitation
studies described in Methods. HDM2 from cells exposed
to increasing concentrations of Nutlin-3 and MI-219 for
12 h was immunoprecipitated using al:1 ratio of mouse
monoclonal antibodies SMP-14 and D-12 (SMP-14 is
known to detect the 60 kDa cleavage product of HDM?2)
and then immunoblotted (IB) with HDM2 polyclonal
antibody (AF1244) to revealed the full length HDM2 in
addition to higher molecular weight species (~130 kDa
bands [likely autoubiquitinated HDM2]) and ~60 kDa
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band (the major degraded species of HDM2)
(Figure 8B). The intensity of the degraded HDM2 bands
were concentration-dependent when obtained from MI-
219-treated cells but this was not seen in HDM2
extracted from Nutlin-3-treated cells.

To determine to what extent each of the two HDM?2
SMIs induced autoubiquitination of HDM2 in WSU-
FSCCL, cells were treated with increasing concentrations
of Nutlin-3 and MI-219 for 16 h. Prior to cell harvesting,
cells were exposed to MG132 (10 uM) for an additional
15 minutes to preserve the ubiquitinated proteins. HDM2
was immunoprecipitated using antibodies to HDM2 as
described above. The blots were then immunoblotted with
monoclonal anti-ubiquitin antibody to detect ubiquiti-
nated HDM2. Blots shown in Figure 8C demonstrate that
MI-219 induced far greater dose dependent autoubiquiti-
nation of HDM2 than Nutlin-3 in this cell line.

These findings suggest that MI-219 but not Nutlin-3
posttranslationally regulates HDM2 protein by inducing
autoubiquitination and degradation of itself as a way of
compensating for the high levels of HDM2 produced in
response to activated p53.

Comparison of MI-219-induced HDM2 autoubiquitination
and degradation in KM-H2 versus WSU-FSCCL cell lines
We confirmed our autoubiquitination and degradation
observations in the KM-H2 cell line, which had previ-
ously appeared to be less sensitive to the effects of both
HDM2 inhibitors. As can be seen in Figure 9A, MI-219
induced a more robust response inducing HDM2 autou-
biquitination and degradation than Nutlin-3 in both cell
lines. However, in KM-H2 cells, HDM2 degradation was
delayed compared to that observed in the WSU-FSCCL
cell line (Figure 9B).
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Figure 6 HDM2 SMis enhance p53 stability at the posttranslational level. A) WSU-FSCCL cells were exposed to 50 uM cyclohexamide (CHX)
to stop protein translation or 10 uM MG132 to halt proteasome activity over the course of 4 h. B) Cells were pre-treated with 10 uM of Nutlin-3
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4 h to evaluate the stability of p53 protein. RD represents relative density to time 0 for CHX and MG132 blots in (A) and time at 24 h 10 uM
pre-treatment for blots in section (B). Changes in relative protein densities are plotted from values obtained (and listed below blots) to show
effects of HDM2 SMIs on sustaining p53 protein expression in the presence of added 50 pM CHX.

Discussion majority of lymphoma tumors retain wt-p53 status,
In unstressed cells, p53 is tightly regulated by HDM2 to  mechanisms to compromise p53 signaling, such as
ensure that its anti-proliferative and anti-apoptotic activ- ~ HDM2 overexpression, deletions in p14ARF, and viral
ity will not harm normal cells. HDM2 and p53 exist in a  oncogenes exist to prevent p53 activation in response to
finely tuned balanced auto regulatory feedback loop by  stress or initiate programmed cell death [28-30]. Be-
which the two proteins mutually control their cellular cause of the importance of HDM2 in regulating p53 func-
levels [27]. In many cancers, this balance is skewed when  tion, attempts are being made to test the effects of its
overexpression of HDM2 leads to constant suppression inhibition in cancer. The discovery of small molecular
of p53 posttranslational modifications (such as phos- inhibitors of HDM2-p53 interaction is considered a sig-
phorylation, acetylation, methylation) which are neces-  nificant development in the treatment of all types of can-
sary for the p53 response to stress. Although the cers, particularly those in which the activation of wt- p53
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AACt method and expressed as fold induction of gene expression relative to that in the untreated control. mMRNA expression levels for p53 (A),
HDM2 (B), p53AIPT (C) and p21 (D). Coded colors represent different concentrations and are listed for each HDM2 SMI at the base of the page.
Error bars plotted represent mean values + SE performed in triplicate from two independently treated experiments.

is suppressed. These small molecules are designed to
physically sit in the p53 binding pocket of HDM2, thereby
preventing HDM2-p53 interaction [31]. HDM2 inhibitors
R7112 (Nutlin-3 analog) and JNJ-26854165 (a tryptamine
derivative) are currently under clinical evaluation in Phase
I studies (NCT00623870, NCT00559533, NCT00676910)
and the first results from Phase 1 pharmacokinetic and
pharmacodynamic study for JNJ-26854165 or Serdemetan
in patients with advanced solid tumors has recently been
published [32]. These first results indicate that this agent
showed clinical efficacy but at elevated doses some toxic
effect were of concern. The authors concluded newer deri-
vatives would provide more optimal results.

We had previously investigated MI-319 in preclinical
studies using lymphoma cell lines with encouraging
results and found that MI-219, MI-319 and Nutlin-3
exhibited similar activity against the cell lines at the con-
centrations used in this study [26]. Here, we investigated
selected effects of MI-219, a clinical grade spiro-
oxindole [33] against lymphoma cell lines and patient-
derived primary indolent non-Hodgkin’s SLL/CLL
lymphoma samples. Using the cis-imidazoline inhibitor,
Nutlin-3 as a benchmark for comparison, we noted sig-
nificant differences between the two classes which may
have clinical implications. Compared to Nutlin-3, differ-
ences could be attributed to enhanced MI-219-induced



Sosin et al. Journal of Hematology & Oncology 2012, 5:57
http://www.jhoonline.org/content/5/1/57

Page 12 of 18

A

(9 () () Nutio3 Mi219 Mi319 DSE
E2Ub. SMI 3 %0 4 S0 4 50 10 (uM)

ub.
is-HOM2

£ 223828

B WSU-FSCCL

Nutlin-3 3
0 25 5 10 25 S 10 (uM)

130 } ub,HOM2
o pdﬂu.' HOM?
72
' ' Deg.
6 % HDM2

34
26|08 & ﬂ“. L chain
ubiquitin 12h
15h IP : HDM2
IB: Ub IB : HOM2
WSU-FSCCL
C Nutlin-3 MI-219
0 25 5 10 25 5 10 1gG (UM)
170 . Ub.
HDM2
95
72 .
56 H chain
34
26 L chain

3 independent experiments.

16h

IP: HDM2

IB: Ubiquitin
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HDM2 SMI for 16 h was immunoblotted with monoclonal anti-ubiquitin antibody to reveal ubiquitin associated-HDM2. Data are representative of

HDM2 autoubiquitination and degradation which
resulted in higher levels of p53 expression and p53
stabilization at equivalent concentrations. Our results in-
dicate that the enhanced MI-219-induced increase in
p53 is the result of disruption of the HDM2-p53 com-
plex and released p53 rather than de novo transcribed or
translated p53. Further in-depth studies with the WSU-
FSCCL cell line demonstrated that MI-219 enhanced

efficacy was associated with significantly increased p53-
induced p53AIP1 mRNA at the expense of p53-
induced HDM2 mRNA at 24 h which was not seen
with Nutlin-3. Nutlin-3 induce a greater increase in
p53-induced p21 mRNA than MI-219 at 48 h. These
results provide evidence that MI-219 can induce cell
death pathways earlier and more robustly than Nutlin-
3 in cell lines and in patient samples. The enhanced



Sosin et al. Journal of Hematology & Oncology 2012, 5:57
http://www.jhoonline.org/content/5/1/57

Page 13 of 18

KM-H2
A 1
r )
Nutlin3 ~ MI218 Nutlin3 M1 3b Nutlin3  MI219
02551025 5 10 0255 10255 10 010 255 10255 10 (M)
" T } v }uo. HOM2
HDM2 Homz | HOM2
MR | [P .. HOM2
I--m..lGAPDH I-------IGAPDH gg HOM2
56| Deg.
12h 24h }uomz
GAPDH
WSU-FSCCL
B )
r 1
Nutind  ML219 Nutin3  M-219 Mi219
0255 10 25 5 10 0255 10 25 5 10 0102551025510 uM)
130 Ub. Ub. g
95 -..“_.l}HDMZ 130 buowe S5 ."' | vowz
pean HoM2 72
95— HOM2 % }Deg
7 o -9 }Deg " HOM2
-8 }HDMZ u HOM2

12h

exposed to HDM2 SMs for up to 48 h.

(= s o ®[cePDH [ 0 00 @ @0 89 @ APOH
24h

Figure 9 Activation of HDM2 autoubiquitination and degradation in wt-p53 cell lines exposed to MI-219. Western blots show that
patterns of autoubiquitination and degradation differ between the wt-p53 cell lines.

———— -
48h

A) Data obtained from KM-H2 cells and B) WSU-FSCCL cells

effects of MI-219 could be attributed to several factors
including higher binding affinity reported for MI-219
to HDM2 (7-fold higher than Nutlin-3) [29], differences
in chemical structure or differences in solubility be-
tween the two agents. Although in our previous study,
we found the binding affinity of MI-219 to be only ~3
times higher than that for Nutlin-3, it is highly unlikely
that a 3-fold difference is crucial as both HDM2 inhibi-
tors are over 500 times more potent than the natural
p53 peptide [26]. Polar groups added to MI-319 to pro-
duce the structure of MI-219, increased its solubility
for better dispersal in aqueous media and resulted in
increased biological activity [33]. The relationship be-
tween aqueous solubility and activity has also been
demonstrated in the development of another HDM2
SMI, HLI373, which was found to be more potent than
its insoluble parent compound HLI 98 s [34]. Three
p53 amino acids (Phel9, Trp23 and Leu26) have been
found to be essential for binding between the two pro-
teins and are inserted into a deep pocket on the sur-
face of HDM2. Nutlin-3 mimics the p53 binding
pocket at these three amino acids. In contrast, MI-219
mimics 4 key binding residues in p53 (Phe 19, Leu22,
Trp23 and Leu26) resulting in more optimal hydrogen
binding and hydrophobic interaction with HDM2 and
this alone may account for its increased efficacy.

While it is known that p53 is induced in response to a
number of stimuli including DNA damage, if p53 is
bound to HDM2, that response is suppressed. During
DNA damage, in normal cells, HDM2 can be

phosphorylated at multiple sites which leads to HDM2
ubiquitination, degradation and p53 stabilization [35,36].
Once again, in cells in which HDM2 is overexpressed,
more HDM2 protein can quickly bind to and suppress
p53 activation. The focus of our study here was to dem-
onstrate that HDM2 inhibition using HDM2 SMIs
would allow free p53 to be activated, if and when neces-
sary, in response to internal as well as external stimuli
or stress. Because HDM2 inhibition with these HDM2
SMI does not involve a response to DNA damage, the
question remains as to what then initiates the activated
p53-induced death pathways in lymphoma cells once p53
suppression is released. Are they the same factors encoun-
tered by normal cells and is the response the same for
cancer and non-cancerous cells are question for future
studies. However, p53 is not the only partner for HDM2.
There are more than 30 known proteins that form interac-
tions with HDM2 and include proteins such as NF-«B,
p21,pRb, TGEB-1 as well as others [37]. Their function
and significance are not fully understood, although they
may have therapeutic implications and have been shown
to play a role in cellular responses such as transcriptional
regulation, apoptosis and the cell cycle [15,38].

In addition to disrupting the HDM2-p53 interaction,
there is evidence that HDM2 SMIs may induce posttran-
slational modification of p53. Poyurovsky et al. recently
showed that Nutlin-3 induced the modification of the C-
terminus of p53 (including acetylation) which may ex-
plain its lower efficiency in dissociating p53-HDM2
in vitro [39]. In other studies, using solid tumors, MI-219
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was found to target the class II histone deacetylase SIRT 1
(which deacetylates p53 allowing HDM2 to target p53
to ubiquitination) and the Bax-Ku70 interaction [40].
Suppression of Ku70, in theory, would allow pro-
apoptotic Bax localization to mitochondria and p53-
mediated apoptosis.

Nutlin-3 was one of the first HDM2-SMIs to show sig-
nificant efficacy in a number of models, thus, there are
more published reports on this agent than on MI-219.
Bixby et al. confirmed that p53 status was the most im-
portant predictor of response to HDM2 SMI in isolated
CLL cells studied ex vivo [41]. Results of other studies in-
dicate CLL cells exposed to Nutlin-3 ex vivo in combin-
ation with cytotoxic chemotherapeutic agents have
demonstrated synergy; while activity of Nutlin-3 as single
agent, was modest [42]. Ex vivo studies using isolated
multiple myeloma cells indicate that Nutlin-3 was as ef-
fective as melphalan without the genotoxic effects [43]. In
treatment resistant acute myelogenous leukemia cell,
Nutlin-induced apoptosis was mediated by transcriptional
activation of pro-apoptotic Bcl-2 family proteins and
transcriptional-independent mitochondrial permeabilization
via mitochondrial p53 translocation [44]. In Hodgkin
lymphoma samples, Nutlin-3 was able to mediate p53
stabilization, cell cycle arrest and initiate the apoptotic
death pathway, including Caspase-3 and PARP cleavage.

Differences in response to Nutlin-3 and MI-219 between
the WSU-FSCCL and KM-H2 cell lines were seen in
our study and may reflect biological differences between
Hodgkin’s and non-Hodgkin’s lymphomas which they
represent, including different time-frame of response to
these two HDM2 SMIs.

This study is one of the first, if not the first, to com-
pare the effects of Nutlin-3 and MI-219 in SLL/CLL
samples ex vivo. These SLL/CLL and MZL samples rep-
resent slowly dividing tumor cells which have lost the
ability to undergo programmed cell death or apoptosis
and this leads to bone marrow replacement by lymph-
oma which impedes its function. Agents which affect
mitotic or cell cycle pathways are generally not useful as
a therapeutic regimen. Instead, optimal anti-cancer
agents are sought to quickly initiate cell death processes
for these lymphomas while sparing normal cells. The
population studied here exhibits varied genetic charac-
teristics and varied responses to standard treatment and
thus, offered an excellent opportunity to test the effects
of HDM2 SMIs for treatment of this disease. The results
show that the response to MI-219-induced HDM2 auto-
ubiquitination and degradation and associated increase
in p53 varied among the studied samples and reflected
the genetic diversity which has thwarted the develop-
ment of a single cure for this group. In other studies,
failure of CLL to respond upregulation of p53 have been
attributed to polymorphism in the p21 gene [45],
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transactive defective spliced variants of the p53 gene
[46], and altered p53-induced effectors [47].

For extended experimental research studies, we uti-
lized cell lines derived from patients with aggressive
forms of NHL. Since these cells do proliferate, effects of
anti-cancer agent modifying cell cycle associated pro-
teins (such as p21) can be demonstrated. Further studies
in wt-p53 WSU-FSCCL NHL cell line confirmed that
MI-219 induced enhance HDM2 autoubiquitination and
degradation compared to that in Nutlin-3-treated cells.
As this was a consistent finding observed in both wt-p53
cell lines and in patient samples, we demonstrated that
none of the HDM2 SMIs (MI-219, MI-319 or Nutlin-3)
inhibited recombinant HDM2 ubiquitination and deg-
radation by themselves in a cell-free ubiquitination
assay. This indicates that the E3 ligase function of
HDM2 is not affected by the inhibitors. The exact mech-
anism for enhanced MI-219 induced HDM2 autoubiqui-
tination will require further detailed investigation.
Possible mechanisms include binding of MI-219, but not
Nutlin-3, to HDM2 results in its interaction with one of
the many proteins that are known to bind to, and modu-
late activity of HDM2. Some of these HDM2-interacting
proteins have been shown to facilitate or induce HDM?2
autoubiquitination and include L11, 14-3-30, SCL-BP1,
FKBP25, ZNF668, TR3, and RASSF1A [48-54]. In
addition, anticancer agents such as Parthenolide acceler-
ate HDM2 autoubiquitination through mechanisms that
required ATM and Berberine, which downregulates
HDM2 at the posttranslational level through modulation
of death domain-associated protein (DAXX) have re-
cently been shown to induce apoptosis [55,56].

Conclusions

In conclusion, our study reveals for the first time unex-
pected differences between MI-219 and the prototypical
Nutlin-3 in lymphoma cell lines and patient samples. We
propose a novel mechanism for MI-219 anti-lymphoma
activity that alters the functional activity of HDM2
through enhanced autoubiquitination and degradation.
Additionally, this mechanism appears to correspond to
biological outcome. Our results provide evidence that
different classes of HDM2 SMIs elicit molecular events
that extend beyond HDM2-p53 dissociation which may
be of biological and potentially therapeutic importance
given the oncogenic nature of HDM2. Further investiga-
tion of such interaction is pivotal to full realization of the
therapeutic potential of these agents in cancer therapy.

Methods

Human lymphoma cell lines and patient-derived B-
lymphoma cells

WSU-FSCCL and WSU-DLCL, cell lines were estab-
lished in our laboratory as previously described [57,58].
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WSU-FSCCL (wt-p53) is a human B-cell follicular small
cleaved cell line; WSU-DLCL, (mt-p53) is a human dif-
fuse large B-cell line. The human Hodgkin lymphoma
derived cell line KM-H2 (wt-p53) was obtained from
DSMZ (Germany). The human diffuse lymphoma cell
line RL (mt-p53) was obtained from the American Type
Culture Collection (Manassas, VA). Cells from normal,
anonymous healthy donors were isolated from discarded
apheresis cones obtained from the Red Cross and were
kindly provided by Dr. Martin Bluth, Associate Director
of Detroit Medical Center Transfusion Services. Periph-
eral blood was collected from lymphoma patients in
leukemic phase following informed consent in the
Lymphoma Clinic at St. John Hospital Van Elslander
Cancer Center for clinical examination in accordance
with institutional review board (IRB) approval. Ethical
consideration for this research study to use the dis-
carded blood after clinical analyses was approved follow-
ing expedited review by the IRB at Wayne State
University School of Medicine.

Patient-derived and normal donor peripheral blood
mononuclear cells (PBMCs) were isolated by Lympho-
Prep density gradient centrifugation (ProGen Biotechnik
GmbH, Germany). Monocytes were depleted from the
LymphoPrep gradient fraction by allowing cells to
adhere to a sterile plastic surface for approximately
1-2 hours at 37°C. Depletion of T-lymphocytes was car-
ried out using 100 pl of Dynabeads pan CD2 (Dynal, Life
Technologies, Grand Island, NY). Cells were incubated
with prewashed beads for 30 min at 4°C while rotating.
T-cells were depleted using the DynaMag as a magnetic
retrieval device according to the manufacturer’s protocol.
The unbound, negatively selected, highly purified B-cell
populations were recovered by aspiration and used for
functional assays. FACS analysis confirmed non-B-cell
depletion and verified that the recovered cell population
contained >90% B-lymphocytes. All cells were main-
tained in suspension in RPMI 1640 medium supplemen-
ted with 10% fetal bovine serum (Denville Scientific,
Denville, NJ) and 1% Penicillin/Streptomycin (Invitrogen,
Carlsbad, CA) at 37°C in a 5% CO, humidified incubator.

Reagents and drug treatments

MI-219 (Ascenta Therapeutics, Malvern, PA) was
synthesized using methods previously published [59,60].
Disulfiram (a RING-finger ubiquitin E3 ligase inhibitor),
Nutlin-3 (Sigma Aldrich, St. Louis, MO), its 150-times
less active enantiomer (+)-Nutlin-3b (Cayman Chemical,
Ann Arbor, MI), and MI-219 were dissolved in 100%
DMSO as 10 mM stock solution. The proteasomal in-
hibitor, MG132 (Cayman Chemical) and cycloheximide
(Sigma) were dissolved in 100% DMSO as 100 mM stock
solution. Reagents were further diluted in sterile water
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immediately prior to adding to cultures to obtain the
desired final concentration.

Identification of p53 status

p53 cDNA sequencing was used to identify the p53 sta-
tus of the patient samples. Genomic DNA was extracted
from approximately 1x10° purified B-lymphocytes
recovered from each patient sample using a ZR-Duet™
DNA/RNA MiniPrep kit (Zymogen Biotech). Samples
were quantitated by UV absorption at 260 nm and
200 ng was used in each PCR amplification reaction.
Two primer sets were used to amplify p53 coding exons
5-9 as previously described [26,61]. These exons have
been identified as the DNA-binding region which con-
tains approximately 90% of all known p53 mutations
[62]. Amplified cDNA PCR products were analyzed by
agarose gel electrophoresis and purified using Wizard
SV Gel/PCR Cleanup kit (Promega, Madison, WI). Two
primers, one from each primer set, and 200 ng of the
PCR products were sent to GeneWiz, Inc. (South Plain-
field, NJ) for DNA sequencing. cDNA sequences were
analyzed for p53 mutations by comparing the obtained
sequences to BLAST wt-p53 coding sequence: NCBI
Reference Sequence: NM_000546.4.

Characteristics of the patient’s lymphoma were made
available through the Lymphoma Clinic at (St. John’s
Hospital) and FISH analyses of chromosomal re-
arrangements were provided by Dr. Steve Buck at Chil-
dren’s Hospital of Michigan Flow Cytometry Core.

Cell viability assays

Cell lines and patient derived cells were seeded at a
density of 2 x 10°/ml and allowed to adapt overnight
before being exposed to varying concentrations of
Nutlin-3 or MI-219 the following day. Control cells
were treated with equal volume of DMSO for a final
concentration of 0.1%. 3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyl-tetrazolium bromide (MTT) reagent (Sigma)
was added 24, 48 or 72 hours later to halt reactions and
monitor cell viability in cell lines. Purple formazan
crystals were solubilized in DMSO and absorbance was
read in a plate reader at 540 nM.3-(4, 5-dimethylthia-
zol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) re-
agent (Sigma) was added 24, 48 or 72 hours later to halt
reactions and monitor cell viability in cell lines. Purple
formazan crystals were solubilized in DMSO and ab-
sorbance was read in a plate reader at 540 nM. Cell via-
bility was also determined at for patient samples using
Trypan Blue (0.4%; Sigma) Exclusion. The ICs, was
assessed as 50% inhibitory concentration compared to
vehicle-treated (control). Data are represented as
Mean + SE. of at least three independent experiments
performed in duplicate for each cell line.
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Biostatistical analyses assessing percent survival of pa-
tient tumor samples were replicated for a minimum of 2
and a maximum of 6 times for each patient at each drug,
dose, and time point. Cell survival for the cumulative pa-
tient cohort ranged from 0% to 100%. The quantile-
quantile plot for patient samples indicated that the
observed data had a longer right tail than would be
expected if the data were normally distributed. Nonethe-
less, a mixed effects analysis of variance was used because
the violation was not outrageously extreme and because
no better alternative could be found given the experimen-
tal design. In the mixed effects model drug, concentration
and time were defined as fixed effects; patient and replica-
tion were defined as random effects. Holm’s procedure
was used to adjust for multiple comparisons.

cDNA preparation and quantitative real-time PCR to
detect the induction of p53-target genes

Total RNA was extracted from treated and control
lymphoma cells using the PureLink™ RNA Mini Kit
(Invitrogen). Total RNA was quantified by NanoDrop and
1 pg of each sample was reverse-transcribed using the
SuperScript® VILO™ c¢DNA synthesis kit according to
the manufacurer’s instructions (Invitrogen). The resulting
cDNA preparations were then cleaned of excess enzyme
with Wizard SV Gel/PCR Cleanup kit (Promega). Real
time PCR amplifications were conducted in a 10 pl reac-
tion volume using the Roche LightCycler® 480 SYBR
Green I Master (Roche, Pleasanton, CA) according to
manufacturer’s protocol. 100 ng cDNA samples were used
for each reaction and mixed with Quanti Tect Primers
(Qiagen) to amplify p53, HDM2, p21, p53AIP1 using
GAPDH as the internal standard. Qiagen priority patened
primer sequences verified and standardized for specific
gene products were those supplied with Qiagen Tect sets;
(www.qgiagen.com). Reactions were carried out in a 384-
well microtiter plate using the LightCycler® 480 System
(Roche). Two independent drug treatments per sample
were performed in triplicate and each reaction was
repeated at least once to ensure accuracy. The PCR cycle
number at threshold (CT) was used for the comparison.
Baseline gene expression and gene expression post treat-
ment were quantified by qRT-PCR relative to GAPDH
using the AACt method and expressed as fold induction
of gene expression relative to that in the untreated control
[63]. Values represent mean+ SE of two independent
experiments performed in triplicate. Statistical analyses
were performed by two-way ANOVA using GraphPad
Prism v. 4.0.

Western blots

Treated cells were collected by centrifugation, washed
twice with sterile PBS, and solubilized in M-PER lysis
buffer (ThermoScientific, Rockford, IL) consisting of a
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cocktail of protease and phosphatase inhibitors (Ther-
moScientific). The concentration of total cell lysate was
quantified by BCA protein method (Pierce; Thermo Sci-
entific). Cellular lysates (50 pg of protein) were fractio-
nated onto 14% or 4-20% Tris-Glycine SDS-PAGE gels,
transferred onto PVDF membrane, and probed with pri-
mary antibodies to p53 (DO-1; Santa Cruz Biotechnol-
ogy, Inc, Santa Cruz, CA), HDM2 (AF1244; R and D
Systems, Minneapolis, MN); p21 (2947), cleaved PARP
(5625), cleaved caspase-3 (9664) and ubiquitin (3936)
from Cell Signaling Technology, Danvers, MA, with
GAPDH (Trevigen, Gaithersburg, MD) as the internal
control. Secondary antibodies were anti-mouse or anti-
rabbit conjugated to HRP (Jackson ImmunoResearch).
Proteins were visualized using chemiluminescence sub-
strate reagents.

For statistical analyses of data for primary lymphoma
cells, relative density was selected as the endpoint. It
was defined as the ratio of the absolute density for a
given protein treated with a given drug, at a given con-
centration, for a specific time, for a specific patient to
the absolute density of GAPDH under the same condi-
tions. Fixed effects linear models were used with drugs,
Nutlin-3 and MI-219 concentrations, proteins, and time
as fixed effects and patient as the random effect. Evalu-
ation of the shape of the frequency distribution of rela-
tive density indicated that a natural log transformation
was required to meet the assumptions of the statistical
tests. Holm’s procedure was used to adjust for multiple
comparisons.

Cell-free HDM2 autoubiquitination assay

Cell free autoubiquitination assays were performed using
200 ng of recombinant His-HDM?2 in the presence or
absence of E2-conjugatng enzyme, UbcH5b, recombin-
ant human E1 (Boston Biochem, Cambridge, MA), in
the presence or absence of HDM2 SMIs. Final concen-
tration of drug was ICsy or 50 uM for Nutlin-3, MI-219,
and MI-319 diluted in 30 upL reaction volume.
Disulfiram (10 uM), an ubiquitin E3 ligase inhibitor was
used as a control. Samples were incubated for 1.5 hours
at 30°C. The reaction was stopped with the addition of
10 pl of 3X SDS loading dye, boiled for 5 minutes, sepa-
rated on a 4-20% Tris-Glycine gradient gel (Invitrogen),
and then immunoblotted with anti-ubiquitin antibody.

Immunoprecipitation

WSU-FSCCL or KM-H2 cells were treated with Nutlin-
3 or MI-219 for specified period of time, harvested and
lysed as described above. Total cellular lysate (1 mg) was
incubated with 5 pg primary antibody overnight (a 1: 1
ratio of HDM2 antibodies SMP-14 and D-12, Santa
Cruz) rotating at 4°C (SMP-14 is known to detect the
60 kDa degraded product of HDM?2). The following day,
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Protein G agarose beads (Millipore) were added to each
sample and incubated at 4°C for an additional 4 hours.
Agarose bead-linked antibody: antigen complexes were
collected by centrifugation, washed 3 times with 1x PBS
prior to the addition of 3x SDS-PAGE loading dye,
denatured at 95°C for 5 min, and centrifuged briefly.
The solubilized immunoprecipitates were separated on a
4-20% Tris-Glycine gradient gel and immunoblot (IB)
with HDM2 polyclonal antibody (AF1244). Ubiquitin
antibody was used for co-immunoprecipitation.

Data analysis and statistical significance

Statistical analyses were performed by two-way ANOVA
unpaired two-tailed GraphPad Prism v. 4.0 or unpaired
two-tailed ¢ test using Microsoft Excel. Image] densitom-
etry software (Version 1.45, US National Institutes of
Health) was used for quantification of Western blot
bands. Selected bands were quantified based on their
relative integrated intensities, calculated as the product
of the selected pixel area and the mean gray value for
those pixels normalized to internal control (GAPDH).
Fold increase or decrease was calculated by standardiz-
ing each treatment as a ratio to the control. Additional
data analysis and statistical methods are described in dif-
ferent sections of the Materials and Methods above.
Statistical significance was set at p<0.05 for all data
comparisons.
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