28 research outputs found

    HisAK70: Progress towards a vaccine against different forms of leishmaniosis

    Get PDF
    Background: Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. Methods: Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. Results: HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100 % inhibition of parasite visceralization in the CL model. Conclusions: The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.This work was partially supported by grants from the Spanish Ministry of Economy and Competitiveness (AGL2010-17394 and AGL2013-44100R) and PLATESA (P2013/ABI-2906) from the Comunidad de Madrid (Spain).Peer Reviewe

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis

    No full text
    Maritsa Margaroni,1,2 Maria Agallou,1 Evita Athanasiou,1 Olga Kammona,3 Costas Kiparissides,3,4 Catherine Gaitanaki,2 Evdokia Karagouni1 1Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 2Department of Animal and Human Physiology, School of Biology, National and Kapodistrian University of Athens, Athens, 3Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 4Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece Abstract: Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4+ and CD8+ T cells. Importantly, the activation of CD8+ T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated–infected mice revealed that protection was accompanied by significant increase of IFNγ and lower levels of IL-4 and IL-10 in protected mice when compared to control infected group. Conclusively, the above nanoformulations hold promise for future vaccination strategies against VL. Keywords: nanovaccine, soluble Leishmania antigen, visceral leishmaniasis, immune response, T cells, cytokines&nbsp

    Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction

    No full text
    Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell popu-lation orchestrating immune responses against several diseases, including leishmaniasis, by bridg-ing innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host–pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double‐sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC‐T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs‐Leishmania interplay and eventually disease establishment. © 2022 by the authors. Li-censee MDPI, Basel, Switzerland

    Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid aconfers protection against experimental visceral leishmaniasis

    No full text
    Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4+ and CD8+ T cells. Importantly, the activation of CD8+ T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated–infected mice revealed that protection was accompanied by significant increase of IFNγ and lower levels of IL-4 and IL-10 in protected mice when compared to control infected group. Conclusively, the above nanoformulations hold promise for future vaccination strategies against VL. © 2017 Margaroni et al

    Induction of protective cellular immune responses against experimental visceral leishmaniasis mediated by dendritic cells pulsed with the N-terminal domain of Leishmania infantum elongation factor-2 and CpG oligodeoxynucleotides

    No full text
    Leishmania elongation factor 2 (EF-2) has been previously identified as a T H 1-stimulatory protein. In this study, we assayed the protective potential of the N-terminal domain of EF-2 (N-LiEF-2, 1–357 aa) that has been predicted to contain several overlapping MHC class I and II-restricted epitopes injected in the form of dendritic cell (DC)-based vaccine. Ex vivo pulsing of DCs with the recombinant N-LiEF-2 domain along with CpG oligodeoxynucleotides (ODNs) resulted in their functional differentiation. BALB/c vaccinated with CpG-triggered DCs pulsed with N-LiEF-2 were found to be the most immune-reactive in terms of induction of DTH responses, increased T cell proliferation and IL-2 production. Moreover, vaccination induced antigen-specific T H 1 type immune response as evidenced by increased IFN-γ and TNFα levels followed by a significant increase of nitrite (NO) and reactive oxygen species (ROS) in splenocyte cultures. Vaccinated mice showed a pronounced decrease in parasite load in spleen and liver when challenged with L. infantum, increased expression of Stat1 and Tbx21 mRNA transcripts versus reduced expression of Foxp3 transcripts and were able to produce significantly elevated levels of IL-2, IFN-γ and TNFα but not IL-10 compared to non-vaccinated mice. Both antigen and parasite-specific CD4 + T and CD8 + T cells contributed to the IFN-γ production indicating that both subtypes contribute to the resistance to infection and correlated with robust nitrite generation, critical in controlling Leishmania infection. Together, these findings demonstrated the immunogenic as well as protective potential of the N-terminal domain of Leishmania EF-2 when given with CpG-triggered DCs representing a basis for the development of rationalized vaccine against leishmaniasis. © 2018 Elsevier Lt

    PLGA nanoparticles modified with a TNFα mimicking peptide, soluble Leishmania antigens and MPLA induce T cell priming in vitro via dendritic cell functional differentiation

    No full text
    Poly(lactide-co-glycolide) nanoparticles (PLGA NPs) represent a new approach for vaccine delivery due to their ability to be taken up by phagocytes and to activate immune responses. In the present study PLGA NPs were surface-modified with a TNFα mimicking peptide, and encapsulated soluble Leishmania antigens (sLiAg) and MPLA adjuvant. The synthesized PLGA NPs exhibited low cytotoxicity levels, while surface-modified NPs were more efficiently taken up by dendritic cells (DCs). The prepared nanoformulations induced maturation and functional differentiation of DCs by elevating co-stimulatory molecule levels and stimulating IL-12 and IL-10 production. Sensitized DCs promoted T cell priming, characterized by the development of mixed T cell subsets differentiation expressing Th lineage-specific transcriptional factors and cytokine genes. Moreover, PLGA NPs were biocompatible, while they were located in lymphoid organs and taken up by phagocytic cells. Our results suggest that surface-modified PLGA NPs encapsulating sLiAg and MPLA could be considered as an effective vaccine candidate against leishmaniasis. © 2016 Elsevier B.V. All rights reserved

    Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice

    No full text
    Visceral leishmaniasis (VL) caused by Leishmania donovani and L. infantum is a potentially fatal disease. To date there are no registered vaccines for disease prevention despite the fact that several vaccines are in preclinical development. Thus, new strategies are needed to improve vaccine efficacy based on a better understanding of the mechanisms mediating protective immunity and mechanisms of host immune responses subversion by immunopathogenic components of Leishmania. We found that mice vaccinated with CPA162−189-loaded p8-PLGA nanoparticles, an experimental nanovaccine, induced the differentiation of antigen-specific CD8+ T cells in spleen compared to control mice, characterized by increased dynamics of proliferation and high amounts of IFN-γ production after ex vivo re-stimulation with CPA162−189 antigen. Vaccination with CPA162−189-loaded p8-PLGA nanoparticles resulted in about 80% lower parasite load in spleen and liver at 4 weeks after challenge with L. infantum promastigotes as compared to control mice. However, 16 weeks after infection the parasite load in spleen was comparable in both mouse groups. Decreased protection levels in vaccinated mice were followed by up-regulation of the anti-inflammatory IL-10 production although at lower levels in comparison to control mice. Microarray analysis in spleen tissue at 4 weeks post challenge revealed different immune-related profiles among the two groups. Specifically, vaccinated mice were characterized by similar profile to naïve mice. On the other hand, the transcriptome of the non-vaccinated mice was dominated by increased expression of genes related to interferon type I, granulocyte chemotaxis, and immune cells suppression. This profile was significantly enriched at 16 weeks post challenge, a time-point which is relative to disease establishment, and was common for both groups, further suggesting that type I signaling and granulocyte influx has a significant role in disease establishment, pathogenesis and eventually in decreased vaccine efficacy for stimulating long-term protection. Overall, we put a spotlight on host immune networks during active VL as potential targets to improve and design more effective vaccines against disease. © Copyright © 2019 Agallou, Athanasiou, Kammona, Tastsoglou, Hatzigeorgiou, Kiparissides and Karagouni
    corecore