20 research outputs found

    Structural and physiological neurovascular changes in idiopathic Parkinson's disease and its clinical phenotypes

    Get PDF
    Neurovascular changes are likely to interact importantly with the neurodegenerative process in idiopathic Parkinson's disease (IPD). Markers of neurovascular status (NVS) include white matter lesion (WML) burden and arterial spin labelling (ASL) measurements of cerebral blood flow (CBF) and arterial arrival time (AAT). We investigated NVS in IPD, including an analysis of IPD clinical phenotypes, by comparison with two control groups, one with a history of clinical cerebrovascular disease (CVD) (control positive, CP) and one without CVD (control negative, CN). Fifty-one patients with IPD (mean age 69.0 ± 7.7 years) (21 tremor dominant (TD), 24 postural instability and gait disorder (PIGD) and six intermediates), 18 CP (mean age 70.1 ± 8.0 years) and 34 CN subjects (mean age 67.4 ± 7.6 years) completed a 3T MRI scan protocol including T2-weighted fluid-attenuated inversion recovery (FLAIR) and ASL. IPD patients showed diffuse regions of significantly prolonged AAT, small regions of lower CBF and greater WML burden by comparison with CN subjects. TD patients showed lower WML volume by comparison with PIGD patients. These imaging data thus show altered NVS in IPD, with some evidence for IPD phenotype-specific differences

    A worldwide study of white matter microstructural alterations in people living with Parkinson’s disease

    Get PDF
    The progression of Parkinson’s disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20–89 years; 33% female) and 885 controls (age: 19–84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen’s d effect sizes reached d = −1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder

    Cerebellar Volume and Disease Staging in Parkinson's Disease: An ENIGMA-PD Study.

    Full text link
    peer reviewed[en] BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax  = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax  = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax  = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions

    Structural and physiological MRI correlates of occult cerebrovascular disease in late-onset epilepsy

    Get PDF
    Late-onset epilepsy (LOE), with onset after 50 years of age, is often attributed to underlying occult cerebrovascular disease. LOE is associated with a three-fold increase in subsequent stroke risk, therefore it is important to improve our understanding of pathophysiology. In this exploratory study, we aimed to determine whether established structural magnetic resonance imaging markers and novel physiological imaging markers of occult cerebrovascular disease were more common in patients with LOE than age-matched controls. Sixteen patients with LOE (mean age ± SD: 67.6 ± 6.5 years) and 15 age-matched control subjects (mean age: 65.1 ± 3.9 years) underwent a 3 T MRI scan protocol. T1-weighted images and T2-weighted fluid attenuated inversion recovery (FLAIR) images were used to determine cortical grey matter volume and white matter hyperintensity (WMH) volume respectively, whilst multiple delay time arterial spin labelling (ASL) images were collected at rest and during a hypercapnic challenge. Cerebral blood flow (CBF) and arterial arrival time (AAT) were calculated from ASL data under both normocapnic and hypercapnic conditions. Cerebrovascular reactivity was also calculated for both CBF and AAT relative to the change in end-tidal CO2. Patients with LOE were found to have significantly lower cortical volume than control subjects (33.8 ± 3.8% of intracranial volume vs. 38.0 ± 5.5%, p = 0.02) and significantly higher WMH volume (1339 ± 1408 mm3 vs. 514 ± 481 mm3, p = 0.047). Baseline whole brain AAT was found to be significantly prolonged in patients with LOE in comparison to control subjects (1539 ± 129 ms vs. 1363 ± 167 ms, p = 0.005). Voxel-based analysis showed the significant prolongation of AAT to be predominantly distributed in the frontal and temporal lobes. Voxel-based morphometry showed the lower cortical volume to be localised primarily to temporal lobes. No significant differences in CBF or cerebrovascular reactivity were found between the two groups. Baseline whole brain AAT and cortical volume differences persisted upon further analysis to take account of differences in smoking history between patients and control subjects. These findings suggest that occult cerebrovascular disease is relevant to the pathophysiology of LOE

    Late-onset epilepsy and occult cerebrovascular disease

    No full text
    The interface between cerebrovascular disease (CVD) and epilepsy is complex and multifaceted. Late-onset epilepsy (LOE) is increasingly common and is often attributed to CVD, and is indeed associated with an increased risk of stroke. This relationship is easily recognizable where there is a history of stroke, particularly involving the cerebral cortex. However, the relationship with otherwise occult, subcortical CVD is currently less well established yet causality is often invoked. In this review, we consider the diagnosis of LOE in clinical practice - including its behaviour as a potential mimic of acute ischemic stroke and transient ischemic attack; evidence for an association between occult CVD and LOE; and potential mechanisms of epileptogenesis in occult CVD, including potential interrelationships between disordered cerebral metabolism and perfusion, disrupted neurovascular unit integrity, blood-brain barrier dysfunction, and inflammation. We also discuss recently recognized issues concerning antiepileptic drug treatment and vascular risk and consider a variety of less common CVD entities associated with seizures

    Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson's disease

    Get PDF
    Idiopathic Parkinson's disease (IPD) is the second most common neurodegenerative disease, yet effective disease modifying treatments are still lacking. Neurodegeneration involves multiple interacting pathological pathways. The extent to which neurovascular mechanisms are involved is not well defined in IPD. We aimed to determine whether novel magnetic resonance imaging (MRI) techniques, including arterial spin labelling (ASL) quantification of cerebral perfusion, can reveal altered neurovascular status (NVS) in IPD. Fourteen participants with IPD (mean ± SD age 65.1 ± 5.9 years) and 14 age and cardiovascular risk factor matched control participants (mean ± SD age 64.6 ± 4.2 years) underwent a 3T MRI scan protocol. ASL images were collected before, during and after a 6 minute hypercapnic challenge. FLAIR images were used to determine white matter lesion score. Quantitative images of cerebral blood flow (CBF) and arterial arrival time (AAT) were calculated from the ASL data both at rest and during hypercapnia. Cerebrovascular reactivity (CVR) images were calculated, depicting the change in CBF and AAT relative to the change in end-tidal CO2. A significant (p = 0.005) increase in whole brain averaged baseline AAT was observed in IPD participants (mean ± SD age 1532 ± 138 ms) compared to controls (mean ± SD age 1335 ± 165 ms). Voxel-wise analysis revealed this to be widespread across the brain. However, there were no statistically significant differences in white matter lesion score, CBF, or CVR between patients and controls. Regional CBF, but not AAT, in the IPD group was found to correlate positively with Montreal cognitive assessment (MoCA) scores. These findings provide further evidence of alterations in NVS in IPD

    Neuromelanin-MRI to Quantify and Track Nigral Depigmentation in Parkinson's Disease:A Multicenter Longitudinal Study Using Template-Based Standardized Analysis

    No full text
    Background: Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin-magnetic resonance imaging (NM-MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. Objectives: The aim was to investigate the diagnostic accuracy of NM-MRI in early PD in a multiprotocol setting and to determine and compare serial NM-MRI changes in PD and controls. Methods: In this longitudinal case–control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template-based analysis was applied for subregional substantia nigra NM-MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. Results: All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. Conclusions: We demonstrate that NM-MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker-enabled clinical trials
    corecore