58 research outputs found

    Enhancement of proton conduction in carboxymethyl cellulose-polyvinyl alcohol employing polyethylene glycol as a plasticizer

    Get PDF
    The present study deals with the enhancement of proton transport and conduction properties of solid polymer electrolyte (SPE)-based carboxymethyl cellulose (CMC) blended with polyvinyl alcohol (PVA) doped with ammonium nitrate (NH4NO3) and plasticized with various compositions of polyethylene glycol (PEG). The SPE system was successfully prepared using an economical method, the solution casting technique, and analysed by Fourier transform infrared spectroscopy and electrical impedance spectroscopy. The infrared spectra show that interaction had occurred at O–H and COO− from CMC when PEG was added which prevailed the enhancement of ion dissociation. Glass transition measurement highlighted that the interaction between CMC–PVA–NH4NO3 and ethylene carbonate at 8 wt% give the most plasticization effect that achieved the lowest Tg. The highest conductivity of the SPE system achieved at ambient temperature was 1.70 × 10−3 S cm−1 for a non-plasticized sample, and further enhanced to 3.00 × 10−3 S cm−1 when 8 wt% PEG was incorporated into the SPE system. The sample with the highest conductivity was found to obey the Arrhenius behaviour with a function of temperature. The ionic conductivity of the SPE system was shown to be primarily influenced by a number of ions (η), ion mobility (μ) and diffusion coefficient (D)

    Effect of intermolecular interaction on ionic conductivity of CMC-DTAB plasticized with Ec based solid biopolymer electrolyte

    Get PDF
    The present work highlights on the structural and conduction properties of the solid biopolymer electrolytes (SBPE) based carboxymethyl cellulose (CMC) doped dodecyltrimethyl ammonium bromide (DTAB) and plasticized with ethylene carbonate (EC). The SBPE exhibits high ionic conductivity at room temperature where the highest value reaching 1.0 × 10-3 S cm-1 for sample containing with 10 wt. % of EC and increases the ionic conductivity when temperature was increased. Complexation within the SBPE has been confirmed by the FTIR analysis where the intermolecular interaction has improvised the coordination between CMC-DTAB and EC resulting in better structural and conductivity ability. The findings suggest that the great potential of CMC and make it promising to serve as an electrolyte for electrochemical devices

    Synthesis, characterization, and demulsification of water in crude oil emulsion via a corn oil-based demulsifier

    Get PDF
    Natural product-based materials have gained significant interest in replacing the petroleum-based oil chemicals with environmentally friendly materials. A corn oil-based demulsifier has been successfully synthesized by the condensation reaction of corn oil with diethanolamine in the presence of a catalyst applied during separation via a water-in-oil (W/O) emulsion. The demulsifier was characterized by FTIR, GC-MS, and LC-QTOF-MS analyses. The surfactant's separation efficacy was studied using the Sany-glass test. The results showed that this new product efficiently demulsified the W/O emulsion with 98% separation achieved. The influence of settling time, demulsifier dosage, and temperature on the demulsification efficiency were investigated. The separation efficiency increased with increasing settling time, demulsifier dose and the temperature conditions accelerate the demulsification process. As well, the interfacial tension decreases with increases of the demulsifier dos

    An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system

    Get PDF
    The present work was carried out to investigate the abnormal trend of electrochemical properties of solid biopolymer electrolytes (SBEs) system-based carboxymethyl cellulose (CMC) blended with polyvinyl alcohol (PVA)-doped NH4Cl. The SBEs system was prepared via solution casting technique and analyzed through Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and electrical impedance spectroscopy (EIS). Complexation was observed with the changes of peaks at 1065 cm−1, 1598 cm−1, 2912 cm−1, and 3396 cm−1 that corresponds to C–O–C, C=O of COO− stretching, C–H stretching, and O–H stretching, respectively, of CMC/PVA blend system upon the addition of NH4Cl. The decrease of the amorphousness and the increase of weight loss demonstrated the abnormal observation of the ionic conductivity when (1–5 wt%) NH4Cl was added in the SBEs system which was lower than the un-doped SBEs system. It was also observed that the highest ionic conductivity at 8.86 × 10−5 Scm−1 was achieved by the sample containing 6 wt% of NH4Cl. The temperature dependence of the SBEs system is found to be governed by the Arrhenius rule. Through the IR deconvolution technique, the conductivity of CMC/PVA-NH4Cl SBEs system was shown to be primarily influenced by the ionic mobility and diffusion coefficient of the ions

    Irregularities trend in electrical conductivity of CMC/PVA-NH4Cl based solid biopolymer electrolytes

    Get PDF
    In this present work, solid biopolymer electrolytes (SBEs) system consists of the blended polymer namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) doped ammonium chloride (NH4Cl) at different composition from 0 to 10 wt. % were successfully prepared by using casting technique. The electrical conductivity of solid biopolymer electrolytes (SBEs) system was investigated by using Electrical Impedance Spectroscopy (EIS). Electrical study shows the highest ionic conductivity in room temperature (303 K) was achieved at 8.86 × 10−5 Scm−1 for sample containing 6 wt. % of NH4Cl. The present system shown unexpected drop after different amount of NH4Cl (1-5 wt. %) were added into the CMC/PVA and its might attributed to the factor of composition of dopant. All SBEs systems were found to be obeys Arrhenius behaviour where the plots show close to unity (R2∼1) and thermally activated

    Studies on H+ ions conducting bio-polymer blend electrolyte based on alginate-PVA doped with NH4NO3

    Get PDF
    This study provides insights into the protonation of bio-polymer blend electrolytes (BBEs) that are based on alginate (Alg)-PVA doped with various NH4NO3 compositions, which was prepared using the solution casting method. The physicochemical of BBEs were studied by using electrical impedance spectroscopy (EIS) analysis, thermogravimetric analysis (TGA), scanning electron microscope (SEM), x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The complexation had occurred between the Alg-PVA functional groups with the H+–NH3NO3 through the shifting and changes in the intensity of the bands. The BBEs films showed the enhancement of amorphous and the presence of globules when introduced NH4NO3, which enhanced the ionic conductivity. The addition of 35 wt.% of NH4NO3 resulted in the highest ionic conductivity value of 5.20×10–4 S cm-1 and demonstrated excellent thermal property. It was found that the system's ionic conductivity was generally influenced by the charge carriers based on evaluation of the Nyquist fitting approaches

    Involvement of ethylene carbonate on the enhancement H+ carriers in structural and ionic conduction performance on alginate bio-based polymer electrolytes

    Get PDF
    This study investigates the structural and ionic conduction performance with the involvement of ethylene carbonate (EC) in a bio-based polymer electrolytes (BBPEs) system, based on alginate doped glycolic acid (GA). The solution casting technique was used to successfully prepare the BBPEs which were characterized with various approaches to evaluate their ionic conduction performance. It was revealed that at ambient temperature, an optimum ionic conductivity of 9.06 × 10−4 S cm−1 was achieved after the addition of 6 wt% EC, with an observed improvement of the amorphous phase and thermal stability. The enhancement of ionic conduction properties is believed to be due to the protonation (H+) enhancement, as proven by FTIR and TNM studies. The findings show that the developed alginate-GA-EC is a promising candidate for use as electrolytes in electrochemical devices that are based on H+ carriers

    Studies on the ions transportation behavior of alginate doped with H+ carrier-based polymer electrolytes

    Get PDF
    In the present work, amorphous bio-based polymer electrolytes (BBPEs) using alginate polymer as a matrix host and doped with varying amounts of ammonium iodide (NH4I) have been developed via the solution casting technique. The physicochemical properties of alginate-NH4I BBPEs were evaluated by using X-Ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), electrical impedance spectroscopy (EIS), and transference number measurement (TNM). The BBPEs film containing 25 wt % of NH4I possessed the highest ionic conductivity of 1.29 × 10−4 S cm−1, the highest amorphous phase, and good thermal stability of up to 234 °C. Based on the Nyquist fitting approaches, the ionic conductivity of the BBPEs was primarily influenced by the ion transportation, which was due to the interplay of segmental motion between the alginate and NH4I, and also the H+ hopping mechanism, as shown by FTIR. The proton transference number (tH+ = 0.41) suggests that alginate BBPEs are promising materials in electrochemical device applications

    Organic materials as polymer electrolytes for supercapacitor application

    Get PDF
    Supercapacitors inevitably attract much attention among the scientific community and the general public since they combine the desirable characteristics of batteries and capacitors. The successful development of environmentally friendly supercapacitors is possible thanks to the organic materials obtained from renewable sources that are considered viable alternative materials for a safer and higher energy polymer electrolytes (PE) system. These organic polymer electrolytes (OPEs) are generally materials consisting of carbon and other atoms, such as oxygen, nitrogen, and halogen. This system is supramolecular in nature and produces high ionic conductivity when doped with ions. There is a myriad of future supercapacitor applications, including their use as supplementary energy sources in the electric grid, electric and microhybrid vehicles, and cell phone base stations. This chapter specifically discusses the recent progress made in the application of OPEs, their performance, challenges, and future directions in the context of supercapacitors

    Basic aspects and properties of biopolymers

    Get PDF
    The consumption of nutritious foods is claimed to confer health benefits and wellness to human beings. The increasing awareness about nutritional needs and health benefits has attracted the attention of researchers, food and drug producers, distributors, health care professionals, and consumers in designing nutraceuticals and functional food products. However, these nutraceuticals and functional food products are hampered by chemical instability, limited solubility in an aqueous medium, and experience fast metabolism that could lead to poor oral bioavailability. These limitations could be overcome by using appropriate biopolymers and assembly methods to encapsulate the bioactive compounds and help to protect the nutraceuticals and functional food products from undesired interactions. Therefore, various attempts have been explored to apply different sources and types of biopolymers as potent ingredients due to their remarkable therapeutic potential. The manufacture and design of these biopolymers must be done in a careful manner to achieve the final products’ desired functional attributes. Researchers must try to meet the requirements of specific basic properties such as physicochemical stability, functional and structural properties, optical and rheological properties, encapsulation, and release properties. Herein, this chapter provides a comprehensive discussion on the design and fabrication of functional biopolymers as a potent substitute in the production of functional food products and nutraceuticals
    corecore