15,195 research outputs found
Reprocessing of radiation by multi-phase gas in Low Luminosity Accretion Flows
We discuss the role that magnetic fields in low luminosity accretion flows
can play in creating and maintaining a multi-phase medium, and show that small
magnetically-confined clouds or filaments of dense cold gas can dramatically
reprocess the `primary' radiation from tori. In particular, radio emission
would be suppressed by free-free absorption, and an extra (weak) component
would appear at optical wavelengths. This is expected to be a common process in
various environments in the central regions of Active Galaxies, such as broad
line regions, accretion disk coronae and jets.Comment: submitted to MNRAS; 4 pages, 1 figure (MNRAS LaTex style
Evolution of size-dependent flowering in Onopordum illyricum: A quantitative assessment of the role of stochastic selection pressures
We explore the evolution of delayed, size-dependent reproduction in the monocarpic perennial Onopordum illyricum, using a range of mathematical models, parameterized with long-term field data. Analysis of the long-term data indicated that mortality, flowering, and growth were age and size dependent. Using mixed models, we estimated the variance about each of these relationships and also individual-specific effects. For the held populations, recruitment was the main density-dependent process, although there were weak effects of local density on growth and mortality Using parameterized growth models, which assume plants grow along a deterministic trajectory, we predict plants should flower at sizes approximately 50% smaller than observed in the field. We then develop a simple criterion, termed the "1-yr look-ahead criterion," based on equating seed production now with that of next year, allowing for mortality and growth, to determine at what size a plant should flower. This model allows the incorporation of variance about the growth function and individual-specific effects. The model predicts flowering at sizes approximately double that observed, indicating that variance about the growth curve selects for larger sizes at flowering. The 1-yr look-ahead approach is approximate because it ignores growth opportunities more than 1 yr ahead. To assess the accuracy of this approach, we develop a more complicated dynamic state variable model. Both models give similar results indicating the utility of the 1-yr look-ahead criterion. To allow for temporal variation in the model parameters, we used an individual-based model with a generic algorithm. This gave very accurate prediction of the observed flowering strategies. Sensitivity analysis of the model suggested that temporal variation in the parameters of the growth equation made waiting to flower more risky, so selected for smaller sizes at flowering. The models clearly indicate the need to incorporate stochastic variation in life-history analyses
Limits from rapid TeV variability of Mrk 421
The extreme variability event in the TeV emission of Mrk 421, recently
reported by the Whipple team, imposes the tightest limits on the typical size
of the TeV emitting regions in Active Galactic Nuclei (AGN). We examine the
consequences that this imposes on the bulk Lorentz factor of the emitting
plasma and on the radiation fields present in the central region of this Active
Nucleus. No strong evidence is found for extreme Lorentz factors. However,
energetics arguments suggest that any accretion in Mrk 421 has to take place at
small rates, compatible with an advection-dominated regime.Comment: 5 pages (Latex MNRAS style), revised version, submitted to MNRA
Dense, thin clouds and reprocessed radiation in the central regions of Active Galactic Nuclei
The primary radiation generated in the central continuum-forming region of
Active Galactic Nuclei can be reprocessed by very dense, small-scale clouds
that are optically-thin to Thomson scattering. In spite of the extreme
conditions expected to prevail in this innermost, central environment, the
radiative clouds can survive and maintain cool temperatures relative to the
ambient emitting region by means of magnetic confinement. Motivated by these
ideas, we present a detailed quantitative study of such clouds, explicitly
describing the physical properties they can attain under thermal and radiative
equilibrium conditions. We also discuss the thermal stability of the gas in
comparison to that of other reprocessing material thought to reside at larger
distances from the central source. We construct a model to predict the emergent
spectra from a source region containing dense clouds which absorb and reemit
the primary radiation generated therein. Our predicted spectra show the
following two important results: (i) the reprocessed flux emitted at optical/UV
energies is insufficient to account for the blue bump component in the observed
spectra; and (ii) the amount of line radiation that is emitted is at least
comparable to (and in many cases dominates) the continuum radiation. The lines
are extremely broad and tend to accumulate in the extreme ultraviolet, where
they form a peak much more prominent than that which is observed in the
optical/UV. This result is supported by current observations, which indicate
that the spectral energy distribution of radio-quiet AGN may indeed reach a
maximum in the EUV band.Comment: 14 pages, 5 figures, latex, uses epsf and rotate, accepted for
publication in M
Nitrogen transfer between clover and wheat in an intercropping experiment
A novel approach to the problem of improving nitrogen supply in organic farming is to use intercropping of cereals with a legume to provide nitrogen transfer within a season and/or to following crops. The affects of intercropping were studied in a column experiment using mixtures of winter wheat (Triticum aestivum cv. Claire), with white clover (w.c.) (Trifolium repens cv. Barblanca) and with red clover (r.c.) (Trifolium pratense cv. Britta). The effects of cutting and removal above ground clover material with and without additional soil disturbance were compared to leaving clover plants in situ and intercropped with wheat in a split root design. Wheat and clover plants, as monocultures, were used for the controls. 15N ammonium nitrate solution was applied. The wheat seeds were sown into the column without nitrogen. We found that the cutting treatment produced the highest yield of wheat. Available ammonium-N in the soil was greatest in the clover control treatment for the column with only red clover roots and in the cutting+soil disturbance treatment for the column with only white clover roots. Available nitrate-N was greatest in the soil disturbance treatment in the column with clover and wheat roots for both red and white clover. The cutting treatment produced the highest yield of wheat
X-ray variability and spectral scaling: a measure of BLR sizes in AGN
We apply a new method of determination of the size of the broad emission-line
region (BLR) in active galactic nuclei. This method relates the radius of the
broad-line region of AGN to the soft X-ray luminosity and spectral index.
Comparing the BLR distances calculated from our photoionization scaling model
to the BLR distances determined by reverberation mapping shows that the scaling
law agrees with the empirical relation. We investigate a
complimentary method of estimating the BLR distance - based on the Keplerian
broadening of the emission lines and the central mass estimated from X-ray
variability.Comment: 4 page latex file, 2 figs. Complete uuencoded compressed PS file is
also available at ftp://saba.fiz.huji.ac.il/~pub/wandel/blrx_ts.uu or at
http://shum.cc.huji.ac.il/~amri/papers/blrx_ts(tex,ps) to appear in Proc. of
Astronomical Time Serie
Compton dragged gamma-ray bursts: the spectrum
We calculate the spectrum resulting from the interaction of a fireball with
ambient soft photons. These photons are assumed to be produced by the walls of
a funnel in a massive star. By parameterizing the radial dependence of the
funnel temperature we calculate the deceleration of the fireball
self-consistently, taking into account the absorption of high energy gamma-rays
due to interaction with the softer ambient photons. The resulting spectrum is
peaked at energies in agreement with observations, has a nu^2 slope in the
X-ray band and a steep power-law high energy tail.Comment: 5 pages, 3 figures, accepted for publication in MNRAS, pink page
The matter content of the jet in M87: evidence for an electron-positron jet
Recent observations have allowed the geometry and kinematics of the M87 jet
to be tightly constrained. We combine these constraints with historical Very
Long Baseline Interferometry (VLBI) results and the theory of synchrotron
self-absorbed radio cores in order to investigate the physical properties of
the jet. Our results strongly suggest the jet to be dominated by an
electron-positron (pair) plasma. Although our conservative constraints cannot
conclusively dismiss an electron-proton plasma, the viability of this solution
is extremely vulnerable to further tightening of VLBI surface brightness
limits. The arguments presented, coupled with future high-resolution
multi-frequency VLBI studies of the jet core, will be able to firmly
distinguish these two possibilities.Comment: 8 pages, 1 ps figure. Revised and accepted for publication in MNRA
Events in the life of a cocoon surrounding a light, collapsar jet
According to the collapsar model, gamma-ray bursts are thought to be produced
in shocks that occur after the relativistic jet has broken free from the
stellar envelope. If the mass density of the collimated outflow is less than
that of the stellar envelope, the jet will then be surrounded by a cocoon of
relativistic plasma. This material would itself be able to escape along the
direction of least resistance, which is likely to be the rotation axis of the
stellar progenitor, and accelerate in approximately the same way as an
impulsive fireball. We discuss how the properties of the stellar envelope have
a decisive effect on the appearance of a cocoon propagating through it. The
relativistic material that accumulated in the cocoon would have enough kinetic
energy to substantially alter the structure of the relativistic outflow, if not
in fact provide much of the observed explosive power. Shock waves within this
plasma can produce gamma-ray and X-ray transients, in addition to the standard
afterglow emission that would arise from the deceleration shock of the cocoon
fireball.Comment: 16 pages, 5 figures, slightly revised version, accepted for
publication in MNRA
Improving supply and phosphorous use efficiency in organic farming systems
Phosphorus (P) is an essential plant nutrient that needs to be managed carefully in organic systems so that crop yield and quality remain sustainable without contributing to environmental damage, particularly that associated with eutrophication. Under organic regulations, minimally processed rock phosphate (PR) can be used to amend low P fertility soils, although the solubility is extremely low at optimum soil pH for most crop growth (pH 6.5). This paper describes a project (PLINK) which aims to develop methods of improving P efficiency on organic farms, although the same approaches may also be applicable on conventional and low-input farms. The methodologies that the project is developing include the fermentation and composting of crop waste material with PR in order to solubilise P and make it more available to the crop. Some initial results are described here. In addition, the project will investigate the alteration of the rotation to include crops or varieties with high P uptake efficiency, or roots that possess acidifying properties which improve P availability for following crops
- …