According to the collapsar model, gamma-ray bursts are thought to be produced
in shocks that occur after the relativistic jet has broken free from the
stellar envelope. If the mass density of the collimated outflow is less than
that of the stellar envelope, the jet will then be surrounded by a cocoon of
relativistic plasma. This material would itself be able to escape along the
direction of least resistance, which is likely to be the rotation axis of the
stellar progenitor, and accelerate in approximately the same way as an
impulsive fireball. We discuss how the properties of the stellar envelope have
a decisive effect on the appearance of a cocoon propagating through it. The
relativistic material that accumulated in the cocoon would have enough kinetic
energy to substantially alter the structure of the relativistic outflow, if not
in fact provide much of the observed explosive power. Shock waves within this
plasma can produce gamma-ray and X-ray transients, in addition to the standard
afterglow emission that would arise from the deceleration shock of the cocoon
fireball.Comment: 16 pages, 5 figures, slightly revised version, accepted for
publication in MNRA