68 research outputs found

    Dynamics of the solar atmosphere above a pore with a light bridge

    Full text link
    Context: Solar pores are small sunspots lacking a penumbra that have a prevailing vertical magnetic field component. They can include light bridges at places with locally reduced magnetic field. Like sunspots, they exhibit a wide range of oscillatory phenomena. Aims: A large isolated pore with a light bridge (NOAA 11005) is studied to obtain characteristics of a chromospheric filamentary structure around the pore, to analyse oscillations and waves in and around the pore, and to understand the structure and brightness of the light bridge. Methods: Spectral imaging observations in the line Ca II 854.2 nm and complementary spectropolarimetry in Fe I lines, obtained with the DST/IBIS spectrometer and HINODE/SOT spectropolarimeter, were used to measure photospheric and chromospheric velocity fields, oscillations, waves, the magnetic field in the photosphere, and acoustic energy flux and radiative losses in the chromosphere. Results: The chromospheric filamentary structure around the pore has all important characteristics of a superpenumbra: it shows an inverse Evershed effect and running waves, and has a similar morphology and oscillation character. The granular structure of the light bridge in the upper photosphere can be explained by radiative heating. Acoustic waves leaking up from the photosphere along the inclined magnetic field in the light bridge transfer enough energy flux to balance the total radiative losses of the light-bridge chromosphere. Conclusions: The presence of a penumbra is not a necessary condition for the formation of a superpenumbra. The light bridge is heated by radiation in the photosphere and by acoustic waves in the chromosphere.Comment: 14 pages, 14 figures, 3 tables, accepted for publication in Astrononomy & Astrophysic

    Space-time segmentation method for study of the vertical structure and evolution of solar supergranulation from data provided by local helioseismology

    Full text link
    Solar supergranulation remains a mystery in spite of decades of intensive studies. Most of the papers about supergranulation deal with its surface properties. Local helioseismology provides an opportunity to look below the surface and see the vertical structure of this convective structure. We present a concept of a (3+1)-D segmentation algorithm capable of recognising individual supergranules in a sequence of helioseismic 3-D flow maps. As an example, we applied this method to the state-of-the-art data and derived descriptive statistical properties of segmented supergranules -- typical size of 20--30 Mm, characteristic lifetime of 18.7 hours, and estimated depth of 15--20 Mm. We present preliminary results obtained on the topic of the three-dimensional structure and evolution of supergranulation. The method has a great potential in analysing the better data expected from the helioseismic inversions, which are being developed.Comment: 6 pages, 4 figures, accepted in New Astronom

    Chromospheric heating by acoustic waves compared to radiative cooling

    Full text link
    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric magnetic field strength between 300 G and 1300 G and inclination of 20-60 degrees, the contribution increases from 23 % (chromospheric network) to 54 % (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.Comment: 9 pages, 10 figures. Accepted for publication in The Astrophysical Journa

    Large-scale horizontal flows in the solar photosphere. IV. On the vertical structure of large-scale horizontal flows

    Full text link
    In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some sub-photospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.Comment: 8 pages, 5 figures, accepted in New Astronom

    Nucleosynthesis of light element isotopes in evolved stars experiencing extended mixing

    Full text link
    We present computations of nucleosynthesis in red giants and asymptotic giant branch stars of Population I experiencing extended mixing. The assumed physical cause for mass transport is the buoyancy of magnetized structures, according to recent suggestions. The peculiar property of such a mechanism is to allow for both fast and slow mixing phenomena, as required for reproducing the spread in Li abundances displayed by red giants and as discussed in an accompanying paper. We explore here the effects of this kind of mass transport on CNO and intermediatemass nuclei and compare the results with the available evidence from evolved red giants and from the isotopic composition of presolar grains of AGB origin. It is found that a good general accord exists between predictions and measurements; in this framework we also show which type of observational data best constrains the various parameters. We conclude that magnetic buoyancy, allowing for mixing at rather different speeds, can be an interesting scenario to explore for explaining together the abundances of CNO nuclei and of Li.Comment: 8 pages, 7 figures, proceeding of 'The Origin of the Elements Heavier than Fe' September 24-28, 2008, Torino, Italy. PASA (accepted for publication

    Large-scale horizontal flows in the solar photosphere V: Possible evidence for the disconnection of bi-polar sunspot groups from their magnetic roots

    Full text link
    In a recent paper (Svanda et al., 2008, A&A 477, 285) we pointed out that, based on the tracking of Doppler features in the full-disc MDI Dopplergrams, the active regions display two dynamically different regimes. We speculated that this could be a manifestation of the sudden change in the active regions dynamics, caused by the dynamic disconnection of sunspots from their magnetic roots as proposed by Schuessler & Rempel (2005, A&A 441, 337). Here we investigate the dynamic behaviour of the active regions recorded in the high-cadence MDI data over the last solar cycle in order to confirm the predictions in the Schuessler's & Rempel's paper. We find that, after drastic reduction of the sample, which is done to avoid disturbing effects, a large fraction of active regions displays a sudden decrease in the rotation speed, which is compatible with the mechanism of the dynamic disconnection of sunspots from their parental magnetic structures.Comment: 11 pages, 9 figures, 1 table; accepted in Astronomy & Astrophysic

    Validated helioseismic inversions for 3-D vector flows

    Full text link
    According to time-distance helioseismology, information about internal fluid motions is encoded in the travel times of solar waves. The inverse problem consists of inferring 3-D vector flows from a set of travel-time measurements. Here we investigate the potential of time-distance helioseismology to infer 3-D convective velocities in the near-surface layers of the Sun. We developed a new Subtractive Optimally Localised Averaging (SOLA) code suitable for pipeline pseudo-automatic processing. Compared to its predecessor, the code was improved by accounting for additional constraints in order to get the right answer within a given noise level. The main aim of this study is to validate results obtained by our inversion code. We simulate travel-time maps using a snapshot from a numerical simulation of solar convective flows, realistic Born travel-time sensitivity kernels, and a realistic model of travel-time noise. These synthetic travel times are inverted for flows and the results compared with the known input flow field. Additional constraints are implemented in the inversion: cross-talk minimization between flow components and spatial localization of inversion coefficients. Using modes f, p1 through p4, we show that horizontal convective flow velocities can be inferred without bias, at a signal-to-noise ratio greater than one in the top 3.5 Mm, provided that observations span at least four days. The vertical component of velocity (v_z), if it were to be weak, is more difficult to infer and is seriously affected by cross-talk from horizontal velocity components. We emphasise that this cross-talk must be explicitly minimised in order to retrieve v_z in the top 1 Mm. We also show that statistical averaging over many different areas of the Sun allows for reliably measuring of average properties of all three flow components in the top 5.5 Mm of the convection zone.Comment: 14 pages main paper, 9 pages electronic supplement, 28 figures. Accepted for publication in Astronomy & Astrophysic

    Observational study of chromospheric heating by acoustic waves

    Get PDF
    Aims. To investigate the role of acoustic and magneto-acoustic waves in heating the solar chromosphere, observations in strong chromospheric lines are analyzed by comparing the deposited acoustic-energy flux with the total integrated radiative losses. Methods. Quiet-Sun and weak-plage regions were observed in the Ca II 854.2 nm and H-alpha lines with the Fast Imaging Solar Spectrograph (FISS) at the 1.6-m Goode Solar Telescope (GST) on 2019 October 3 and in the H-alpha and H-beta lines with the echelle spectrograph attached to the Vacuum Tower Telescope (VTT) on 2018 December 11 and 2019 June 6. The deposited acoustic energy flux at frequencies up to 20 mHz was derived from Doppler velocities observed in line centers and wings. Radiative losses were computed by means of a set of scaled non-LTE 1D hydrostatic semi-empirical models obtained by fitting synthetic to observed line profiles. Results. In the middle chromosphere (h = 1000-1400 km), the radiative losses can be fully balanced by the deposited acoustic energy flux in a quiet-Sun region. In the upper chromosphere (h > 1400 km), the deposited acoustic flux is small compared to the radiative losses in quiet as well as in plage regions. The crucial parameter determining the amount of deposited acoustic flux is the gas density at a given height. Conclusions. The acoustic energy flux is efficiently deposited in the middle chromosphere, where the density of gas is sufficiently high. About 90% of the available acoustic energy flux in the quiet-Sun region is deposited in these layers, and thus it is a major contributor to the radiative losses of the middle chromosphere. In the upper chromosphere, the deposited acoustic flux is too low, so that other heating mechanisms have to act to balance the radiative cooling.Comment: 11 pages, 10 figures, 3 table
    corecore