157 research outputs found

    `Island Surfing' Mechanism of Electron Acceleration During Magnetic Reconnection

    Full text link
    One of the key unresolved problems in the study of space plasmas is to explain the production of energetic electrons as magnetic field lines `reconnect' and release energy in a exposive manner. Recent observations suggest possible roles played by small scale magnetic islands in the reconnection region, but their precise roles and the exact mechanism of electron energization have remained unclear. Here we show that secondary islands generated in the reconnection region are indeed efficient electron accelerators. We found that, when electrons are trapped inside the islands, they are energized continuously by the reconnection electric field prevalent in the reconnection diffusion region. The size and the propagation speed of the secondary islands are similar to those of islands observed in the magnetotail containing energertic electrons.Comment: 5 pages, 4 figures, submitted to J. Geophys. Res

    THEMIS multispacecraft observations of a reconnecting magnetosheath current sheet with symmetric boundary conditions and a large guide field

    Get PDF
    We report three spacecraft observations of a reconnecting magnetosheath current sheet with a guide field of unity, with THEMIS D (THD) and THEMIS E (THE)/THEMIS A (THA) observing oppositely directed reconnection exhausts, indicating the presence of an X line between the spacecraft. The near-constant convective speed of the magnetosheath current sheet allowed the direct translation of the observed time series into spatial profiles. THD observed asymmetries in the plasma density and temperature profiles across the exhaust, characteristics of symmetric reconnection with a guide field. The exhausts at THE and THA, on the other hand, were not the expected mirror image of the THD exhaust in terms of the plasma and field profiles. They consisted of a main outflow at the center of the current sheet, flanked by oppositely directed flows at the two edges of the current sheet, suggesting the presence of a second X line, whose outflow wraps around the outflow from the first X line

    New Insights into Dissipation in the Electron Layer During Magnetic Reconnection

    Full text link
    Detailed comparisons are reported between laboratory observations of electron-scale dissipation layers near a reconnecting X-line and direct two-dimensional full-particle simulations. Many experimental features of the electron layers, such as insensitivity to the ion mass, are reproduced by the simulations; the layer thickness, however, is about 3-5 times larger than the predictions. Consequently, the leading candidate 2D mechanism based on collisionless electron nongyrotropic pressure is insufficient to explain the observed reconnection rates. These results suggest that, in addition to the residual collisions, 3D effects play an important role in electron-scale dissipation during fast reconnection.Comment: 17 pages, 4 figure

    MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line

    Clustering of magnetic reconnection exhausts in the solar wind: An automated detection study

    Get PDF
    Context. Magnetic reconnection is a fundamental process in astrophysical plasmas that enables the dissipation of magnetic energy at kinetic scales. Detecting this process in situ is therefore key to furthering our understanding of energy conversion in space plasmas. However, reconnection jets typically scale from seconds to minutes in situ, and as such, finding them in the decades of data provided by solar wind missions since the beginning of the space era is an onerous task. Aims. In this work, we present a new approach for automatically identifying reconnection exhausts in situ in the solar wind. We apply the algorithm to Solar Orbiter data obtained while the spacecraft was positioned at between 0.6 and 0.8 AU and perform a statistical study on the jets we detect. Methods. The method for automatic detection is inspired by the visual identification process and strongly relies on the WalĂ©n relation. It is enhanced through the use of Bayesian inference and physical considerations to detect reconnection jets with a consistent approach. Results. Applying the detection algorithm to one month of Solar Orbiter data near 0.7 AU, we find an occurrence rate of seven jets per day, which is significantly higher than in previous studies performed at 1 AU. We show that they tend to cluster in the solar wind and are less likely to occur in the tenuous solar wind (< 10 cm−3 near 0.7 AU). We discuss why the source and the degree of AlfvĂ©nicity of the solar wind might have an impact on magnetic reconnection occurrence. Conclusions. By providing a tool to quickly identify potential magnetic reconnection exhausts in situ, we pave the way for broader statistical studies on magnetic reconnection in diverse plasma environments

    Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

    Full text link
    Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to ''electron-only'' reconnection with very large quasi-steady reconnection rates. The transition to more traditional ''ion-coupled'' reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths

    Magnetic increases with central current sheets: Observations with Parker Solar Probe

    Get PDF
    Aims. We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth’s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. Methods. In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the other was observed during a heliospheric current sheet crossing on November 13, 2018. They both show the presence of a central current sheet with a visible ion jet and general characteristics consistent with the occurrence of magnetic reconnection. We then performed a survey of PSP data from encounters 1 to 4 and find 18 additional events presenting an increase in the magnetic field magnitude of over 30% and a central current sheet. We performed a statistical study on the 20 "magnetic increases with central current sheet" (MICCS), with 13 observed in the regular slow solar wind with a constant polarity (i.e., identical strahl direction), and 7 which were specifically observed near a heliospheric current sheet (HCS) crossing. Results. We analyze and discuss the general properties of the structures, including the duration, location, amplitude, and magnetic topology, as well as the characteristics of their central current sheet. We find that the latter has a preferential orientation in the TN plane of the RTN frame. We also find no significant change in the dust impact rate in the vicinity of the MICCS under study, leading us to conclude that dust probably plays no role in the MICCS formation and evolution. Our findings are overall consistent with a double flux tube-configuration that would result from initially distinct flux tubes which interact during solar wind propagation

    Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet

    Get PDF
    During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale Heliospheric Current Sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during Encounters 1, 4 and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with ‘switchbacks’. Thus, the PSP findings suggest that large-scale dynamics either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers) plays a critical role in triggering reconnection onset
    • 

    corecore