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ABSTRACT

Context. Magnetic reconnection is a fundamental process in astrophysical plasmas that enables the dissipation of magnetic energy at
kinetic scales. Detecting this process in situ is therefore key to furthering our understanding of energy conversion in space plasmas.
However, reconnection jets typically scale from seconds to minutes in situ, and as such, finding them in the decades of data provided
by solar wind missions since the beginning of the space era is an onerous task.
Aims. In this work, we present a new approach for automatically identifying reconnection exhausts in situ in the solar wind. We apply
the algorithm to Solar Orbiter data obtained while the spacecraft was positioned at between 0.6 and 0.8 AU and perform a statistical
study on the jets we detect.
Methods. The method for automatic detection is inspired by the visual identification process and strongly relies on the Walén relation.
It is enhanced through the use of Bayesian inference and physical considerations to detect reconnection jets with a consistent approach.
Results. Applying the detection algorithm to one month of Solar Orbiter data near 0.7 AU, we find an occurrence rate of seven jets per
day, which is significantly higher than in previous studies performed at 1 AU. We show that they tend to cluster in the solar wind and
are less likely to occur in the tenuous solar wind (<10 cm−3 near 0.7 AU). We discuss why the source and the degree of Alfvénicity of
the solar wind might have an impact on magnetic reconnection occurrence.
Conclusions. By providing a tool to quickly identify potential magnetic reconnection exhausts in situ, we pave the way for broader
statistical studies on magnetic reconnection in diverse plasma environments.
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1. Introduction

Magnetic reconnection is a fundamental energy-transfer process
triggered at kinetic scales in plasmas, that converts magnetic
energy into kinetic and thermal energy while allowing a global
reconfiguration of the magnetic field topology. The typical mag-
netic field configuration of a reconnection site is shown in Fig. 1,
with a plasma exhaust bounded by two discontinuities that are
akin to rotational discontinuities (Gosling et al. 2005a). A space-
craft crossing a reconnection exhaust would observe an ion jet
as well as an electron jet, both coincidental with a sharp rota-
tion in the magnetic field and an electric current. Additional sig-
natures may also arise, such as a decrease in the magnetic field
strength owing to energy conversion, an increase in electron tem-
perature, as well as an increase in density (e.g., Gosling et al.
2005a, Paschmann et al. 2013). In order to best identify the recon-
nection signatures in the magnetic field and velocity, the lmn
coordinate system associated with the magnetic field rotation
is usually used (Sonnerup & Cahill 1967), where l is the maxi-
mum variance direction of the magnetic field, n is its minimum
variance direction (normal to the current sheet), and m is the

direction completing the frame. The reconnection jet would then
align with the l direction, making it easy to detect and characterise.

To test whether a plasma jet is indeed consistent with a rota-
tional discontinuity, and thus possibly the result of reconnection,
a test of the Walén relation is often performed. The Walén rela-
tion is derived from jump properties for an Alfvénic rotational
discontinuity (Hudson 1970) and states that the change in veloc-
ity across such a discontinuity should follow:

∆V = ± ∆VA, (1)

with

VA =
B
√
µ0ρ

√
1 −

µ0

B2 (P‖ − P⊥) , (2)

where VA is the local Alfvén velocity and (P‖ − P⊥)
µ0

B2 is
the pressure anisotropy correction term (with P‖ and P⊥ being
the pressures parallel and perpendicular to the magnetic field,
respectively). As the spacecraft crosses the exhaust, it encounters
two rotational discontinuities with opposite correlations. This

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

A98, page 1 of 15

https://doi.org/10.1051/0004-6361/202346043
https://www.aanda.org
mailto:n.fargette@ic.ac.uk
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Fargette, N., et al.: A&A 674, A98 (2023)

Fig. 1. Illustration of the Walén relation across a reconnection site.
Magnetic field lines are drawn in black, while white arrows represent
the plasma flow in the de Hoffman-Teller frame (de Hoffmann & Teller
1950). The rotational discontinuities delimiting the exhaust are shown
as dashed lines, with their colour indicating which sign of the Walén
relation applies at this boundary. An illustrative spacecraft trajectory is
plotted as a dotted arrow. Figure adapted from Gosling et al. (2005a).

is illustrated in Fig. 1, where at each boundary, the sign of the
Walén relation changes as indicated by the direction of the flow
in the de Hoffman-Teller frame (de Hoffmann & Teller 1950).
A spacecraft flying through the exhaust following the dotted
arrow would first see an anticorrelation between V and VA upon
entry into the exhaust, followed by a correlation when exiting
the exhaust.

The above signatures of magnetic reconnection were first
observed in situ in the solar wind by Gosling et al. (2005a) in
the interior of an interplanetary coronal mass ejection (ICME)
at 1 AU. Since then, the role of magnetic reconnection has
been highlighted in different contexts: it is known to occur
close to or within ICMEs (Gosling et al. 2005a; Gosling & Szabo
2008), to participate in their natural erosion (Lavraud et al. 2014;
Ruffenach et al. 2012, 2015), and to play a key role in the dynam-
ics of the heliospheric current sheet (HCS) by releasing flux
ropes from the tip of the helmet streamer (Gosling et al. 2005b,
2006; Lavraud et al. 2009, 2020; Sanchez-Diaz et al. 2017, 2019;
Phan et al. 2021; Réville et al. 2022). Magnetic reconnection has
also been observed in the regular solar wind at 1 AU (Phan et al.
2006, 2009, 2010; Davis et al. 2006; Eriksson et al. 2009; Gosling
2007; Gosling et al. 2007; Mistry et al. 2015, 2017) and is sus-
pected to play a role in heating and accelerating the solar wind
closer to the Sun (e.g., Priest et al. 2005; Klimchuk 2006), though
evidence of the latter is still lacking. The Parker Solar Probe
(PSP) mission has provided new insights into the role of magnetic
reconnection, highlighting that in the young solar wind, mag-
netic reconnection is not a prevalent process, with the majority
of non-reconnecting current sheets being found to be associated
with transient structures called magnetic switchbacks (Phan et al.
2020). At 0.1 AU, magnetic reconnection is more frequently
observed near the HCS (Phan et al. 2021) than in the regular solar
wind, and the opposite is true at 1 AU.

While detecting magnetic reconnection in situ is key to
furthering our understanding of energy conversion in space
plasmas, the associated exhausts typically span broad scales
in the time series, from seconds or below (providing the
instrumental resolution is sufficiently high) to tens of minutes.
As a consequence, detecting exhausts in the decades of data
provided by present and past solar wind missions such as Wind,

ACE, Helios, PSP, and Solar Orbiter can be an onerous task.
Tilquin et al. (2020) attempted to detect reconnection jets auto-
matically, and managed to drastically reduce the time needed to
build a magnetic reconnection data set with Helios data by adopt-
ing a machine learning approach. More recently, Eriksson et al.
(2022) also devised an automatic detection method and anal-
ysed ten years of WIND data based on typical reconnection
signatures. Both of these studies represent significant progress
towards analysing magnetic reconnection in the solar wind in a
systematic way. In line with these works, here we present a new
approach to automatically identify reconnection exhausts in situ
using Bayesian considerations.

The objective of this work is to analyse the prevalence of
magnetic reconnection in the solar wind using Solar Orbiter data.
To this end, we present a new approach for automatically iden-
tifying reconnection exhausts in situ where we aim to obtain a
low false-positive (FP) rate, an acceptable running time, and a
reusable tool that can easily be applied by the scientific commu-
nity. The method, described in Sect. 3, is inspired from the visual
identification process and relies heavily on the Walén relation,
as well as on Bayesian inference and physical considerations.
In Sect. 4, we apply the algorithm to Solar Orbiter data from
between 0.6 and 0.8 AU, where we detect 146 jets over a period
of 20.7 days. We perform a statistical study on the jets we detect
and discuss our results in Sect. 5. We summarize our findings in
Sect. 6.

2. Data

In this paper, we use data from the Solar Orbiter spacecraft
(Müller 2020), particularly the Proton and Alpha particle Sensor
(PAS; Louarn et al. 2021) of the Solar Wind Analyser (SWA)
suite (Owen et al. 2020) and the magnetometers of the MAG
instrument (Horbury et al. 2020). We resample all data products
to 0.25 Hz in order to match the time resolution of the PAS data
in its normal mode. The data we use are shown in the RT N frame
of reference, with R (radial) being the Sun to spacecraft unit vec-
tor, T (tangential) being the cross product between the Sun’s spin
axis and R, and with N (normal) completing the direct orthogo-
nal frame.

3. Detection algorithm

When searching for magnetic reconnection signatures in situ, we
typically look for ion jets that are centred on coincidental thin,
bifurcated current sheets and perform the Walén test to check
whether or not the exhaust boundaries are consistent with rota-
tional discontinuities of opposite correlations (e.g., Phan et al.
2020). It is this process, which seems quite simple at first glance,
that we aim to automatise in this work.

3.1. Change of correlation

The first feature we focus on detecting is a quantifiable change
of correlation. To do this, we test the Walén relation and com-
pare different models (defined hereafter) on various scales using
a sliding window method.

3.1.1. Model definitions

Let t̂ be a time vector centred on a time t0 and containing N
data points spaced by a constant dt. We denote V(̂t) the velocity
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vector measured by the spacecraft on this given temporal win-
dow1 and consider the variation vector relative to the window’s
centre ∆V(̂t) = V(̂t) − V(t0). We aim to compare this relative
velocity vector ∆V(̂t) to a modelled velocity ∆VM (̂t, θ), which
is defined as follows:

∆VM (̂t, θ) =

{
θa ∆VA (̂t), if t ≤ t0
θb ∆VA (̂t), otherwise,

(3)

where ∆VA (̂t) = VA (̂t) − VA(t0) with VA the Alfvén speed,
and where θ = [θa, θb]T is a two-component parameter vector
with θa,b = ±1. Assuming that the regular solar wind is mostly
Alfvénic (Bale et al. 2019; Louarn et al. 2021), only four cases
arise, defining four models:

– θ1 = [+1,+1]T corresponds to an Alfvénic correlated solar
wind,

– θ2 = [−1,−1]T corresponds to an Alfvénic anti-correlated
solar wind,

– θ3 = [+1,−1]T corresponds to a correlated / anti-correlated
reconnection jet,

– θ4 = [−1,+1]T corresponds to an anti-correlated / correlated
reconnection jet.

In the following subsections, we compare these four models, but
we underline here that the algorithm best works where the solar
wind is Alfvénic as we assumed.

3.1.2. Likelihood computation

For each model, we compute the log-likelihood of the data,
which quantifies the probability of observing the data assuming
that this model is correct. We assume that the dispersion σ of our
data ∆V around its expected value ∆VM takes on the following
form:

σ(̂t) = σ0 + εN

1 − exp

1
2

(
t̂ − t0
Ndt

)2 . (4)

The first term assumes a white noise model with a σ0 =
2.0 km s−1 dispersion. This value corresponds to the typical error
on the velocity vector for the PAS instrument on Solar Orbiter,
which is estimated to be between 1 and 3 km s−1 (Louarn et al.
2021). Increasing σ0 decreases the number of detections, as this
amounts to increasing the assumed noise on ∆V. The second
term is introduced to account for the fact that the Alfvénicity
of the solar wind may not be perfect. Therefore, the considered
model is less accurate at the edges of the window as we take
the reference point at its centre (especially true for large scales)
and as such the dispersion should increase with distance from
the centre of the window. We assume a Gaussian form with an
amplitude of ε = 0.1 km s−1 increase in dispersion per data point.

From here, for a given θ, the likelihood of the data follows a
normal distribution and may be written for each data point mea-
sured at ti as

p(∆V(ti) | ti, θ) = G
(
∆V(ti), ∆VM(ti, θ), σ2

i 1
)
, (5)

where p(∆V(ti) | ti, θ) designates the probability of observing
∆V(ti) at this given time ti knowing θ, G is a 3D Gaussian distri-
bution function and 1 is the identity matrix. More explicitly, by
assuming independent measurements and taking the logarithm

1 In this section, all vectors depending on t̂ (V(̂t), ∆V(̂t), ∆VM (̂t, θ),
etc.) have a dimension of 3×N.

of this expression, the log-likelihood of the data is given by (see
Appendix A)

ln p(∆V | t̂, θ)

=

N∑
i=1

−
1

2σ2
i

|∆V(ti) − ∆VM(ti, θ)|2 −
3
2

ln(2πσ2
i ). (6)

3.1.3. Model comparison and prior definition

The posterior probability – which quantifies the credence of a
model (in our case, the value of θ) given the observed data (i.e.
the values of ∆V on the time window t̂) – is then computed
through the Bayes equation:

ln p(θ | t̂,∆V) = ln p(θ | t̂) + ln p(∆V | t̂, θ) − ln p(∆V | t̂), (7)

where ln p(∆V | t̂) is a constant of θ, and p(θ | t̂) is the prior
probability on the θ parameter for our given window, which rep-
resents the a priori probability of observing an exhaust in the
solar wind. Given each posterior probability, p(θ | t̂,∆V), we
may compare the probability of observing a jet to the probability
of observing an Alfvénic solar wind using Bayesian inference
and defining the posterior ratio:

p(jet| t̂,∆V)
p(no jet| t̂,∆V)

=
p(θ3| t̂,∆V) + p(θ4| t̂,∆V)
p(θ1| t̂,∆V) + p(θ2| t̂,∆V)

, (8)

where p(jet| t̂,∆V) designates the probability that the points in
the time window t̂ are part of a reconnection jet given the data
∆V. As described above, this event can occur in one of two
ways: a correlated–anticorrelated or an anticorrelated–correlated
reconnection exhaust (i.e. θ3 or θ4). On the other hand, the prob-
ability p(no jet| t̂,∆V) is composed of the two events θ1 and θ2,
corresponding to the case of an Alfvénic wind. All the terms of
Eq. (8) can be computed with the help of Eq. (7). As such, the
evaluation of this ratio remains numerically challenging, and we
show in Appendix A that a relevant equivalent can be defined as

Q(̂t) =

 p
(
jet| t̂,∆V

)
p
(
no jet| t̂,∆V

) 
1/N

' p(jet| t̂)
1
N

∑
k=3,4

p(∆V| t̂, θk)
1
N

∑
k=1,2

p(∆V| t̂, θk)
1
N

, (9)

where p(jet| t̂) designates the prior probability, which is defined
as the probability that all points in the time window t̂ are part of
a reconnection jet. The main benefit of using Eq. (9) instead of
Eq. (8) lies in the presence of much larger terms in the sums,
allowing their evaluation without truncation errors. The only
remaining factor that needs to be defined in order to compute
Q(̂t) is the prior probability p(jet| t̂).

Defining the prior probability is an important step in the
detection algorithm, as it amounts to setting a threshold on the
detection. Let us assume that each data point has a 1% chance
of being part of a reconnection exhaust. This value is taken
based on the study of Lavraud et al. (2021), as the six exhausts
they detect in one day represent around 1% of the data. Let
us underline here that the 1% value is not conservative, and
in Appendix B we show that decreasing this value leads to a
better performance of the algorithm; it might be adjusted in
future work. This value being fixed, the prior probability for a
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Fig. 2. Automated detection of reconnection exhausts on July 16, 2020. We show the magnetic field components and its amplitude in panel a, the
ion velocity vector components in panels b and c, the ion density in panel d, and the ion temperature in panel e. Panel f displays the quantity
lnQ25(t) and lnQ850(t) (see Sect. 3.1). The shaded areas indicate the final detections made by the algorithm (see Sect. 3.2). We show the six
reconnection jets that were also detected by Lavraud et al. (2021) in light blue, two new true detections in darker blue, and one false detection in
red.

given window is then given by p( jet | t̂) = 0.01N . The fact that
this probability decreases with N exponentially is the result of
assuming that each point of t̂ has an independent probability of
being part of a jet. Naturally, it is likely in practice for successive
points to be correlated, and it is therefore likely that the proba-
bility of the time window being part of a jet is the result of an
underlying stochastic process that is a function of time. The care-
ful estimate of the nature of this process is an issue that would
probably necessitate an entire study. As it is, this exponential
decrease with N must therefore be seen as a lower bound of the
prior p(jet|̂t), in addition to being easy to implement and com-
pute. Taking this term to the power 1/N in Eq. (9) allows us to
get rid of most of the window’s size dependence on the posterior
ratio by using Q(̂t). We can then evaluate Eq. (9) for any time
window, and a change of correlation is detected on our consid-
ered window if the posterior ratio is superior to 1, or equivalently
if the scalar value lnQ(̂t) is positive.

3.1.4. Expanding to the complete data set

Until now, we have only considered a given time window t̂, char-
acterised by its centre t0 and width N. For this time window, we
computed a scalar value, which is the probability of observing a
correlation change given the observed data in this window. This
quantity can be written Q(t0,N) or equivalently Qs(t0), with the
subscript s designating the scale of the temporal window Ndt.
Let us now expand to a complete data set characterised by a

time vector t. To sweep through this data set, we only need
to repeat the process described immediately above while shift-
ing t0. This yields a continuous log-probability over time Qs(t).
To detect correlation changes on different scales, we start from
small scales and gradually increase the window size s. A poten-
tial jet is flagged whenever the quantity lnQs(t) becomes positive
for at least two consecutive points, and we only flag an interval
if it has not been detected at lower scales. This process (going
from small to large scales) allows us to detect an exhaust on the
minimum scale possible, which permits us to accurately account
for its duration.

3.1.5. Application to data from July 16, 2020

As an illustration we apply this first part of the detection algo-
rithm to 24h of data obtained on July 16, 2020, and presented in
Fig. 2. This day was studied in detail by Lavraud et al. (2021),
who identified six reconnection exhausts, which are highlighted
as light blue shaded areas in Fig. 2. We show the magnetic field
and ion data in the first five panels for this day for context. We
ran the detection algorithm, investigating 100 scales starting
from 25 s up to 850 s, and we display lnQ25(t) and lnQ850(t) in
Fig. 2f. The six reconnection exhausts identified by
Lavraud et al. (2021) and highlighted in light blue all cor-
respond to positive values of lnQ(t) for one or the other scale,
except for the last jet observed at 23:01 UT. The latter is actually
detected by the algorithm at intermediate scales.
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Fig. 3. Illustration of the Walén relation for the reconnection jet occur-
ring on July 16, 2020, between 12:34:39 and 12:38:07 (Lavraud et al.
2021). Panel a displays the magnetic field and panel b the variation of
the ion velocity vector around its mean value. Both are transformed in
the lmn frame using a minimum variance analysis (Sonnerup & Cahill
1967). The grey area highlights the jet location. Panels c to e show
zooms onto the jet and compare the quantities ∆V (full lines) and ∓∆VA
(dashed lines), with the change of correlation occurring at the centre of
the jet (black vertical line).

In Fig. 3, we illustrate the Walén relation for one of the
reconnection jets identified by Lavraud et al. (2021) on July 16,
2020, around 12:36, which our algorithm picks up as well. In
Figs. 3c to 3e, it is clear that ∆V and ∓∆VA correspond to one
another. Any other value of θ (+∆VA,−∆VA, ±∆VA) would not
show a better fit to ∆V . Interestingly, the reconnection jet seems
to be Alfvénic on its leading edge (jump in ion speed around
40 km s−1) and sub-Alfvénic on the trailing edge (20 km s−1).

After this first part of the algorithm, all intervals where
lnQ(t) is positive (Fig. 2f) are flagged, and while some of them
are true new detections, others are false positives. The second
part of the algorithm is designed to differentiate between true
and false detections based on some physical considerations.

3.2. Jet confirmation

3.2.1. Bl reversal

The first step we take is to transform each interval to its associ-
ated lmn frame using the minimum variance analysis technique
(Sonnerup & Cahill 1967). Similarly to Tilquin et al. (2020), we
impose that the Bl component should reverse over the interval.
We additionally require that the sign of Bl remains the same
over 10% of the window length at the beginning and end of
the window.

3.2.2. The existence of a jet

We ensure that a velocity jet is indeed observed along the l direc-
tion. We require that:

– The signs of the Vl variation between the centre of the win-
dow and both edges of the interval are the same, meaning
that sign(Vl(t0) − Vl(ti)) = sign(Vl(t0) − Vl(t f )), with ti and t f
being the start and end time of the window;

– The maximum Vl variation is superior to the maximum vari-
ations of Vm and Vn;

– The Vl variation between the centre of the window and both
edges of the interval should be at least 30% of the maximum
Vl variation.

The first requirement is enforced in order to discard changes of
correlations that are associated with a V rotation (instead of a
B rotation); the second point ensures that the jet is observed in
the l component; and the third point discards intervals where Vl
does not display a sufficiently clear jet signature. This latter point
is introduced at the expense of removing the most asymmetric
reconnection cases.

3.2.3. A condition on the electric current

During a change of correlation coincidental with a current sheet,
there always exists a magnetic shear and an associated current. In
the limit of null magnetic shear and current, magnetic reconnec-
tion may not occur, but this constitutes a singularity. In practice,
we should define a minimum current for our algorithm to detect
an exhaust. Current measurements are not available as a data
product on Solar Orbiter, and therefore we devise a 1D approx-
imation for the electric current based on the Maxwell Ampere
equation. In the lmn frame, the rotational of B writes:

∇ ∧ B =

∂mBn − ∂nBm
∂nBl − ∂lBn
∂lBm − ∂mBl

 . (10)

We assume no variation of B along m (∂m = 0), and we neglect
the terms ∂nBm, ∂lBm, and ∂lBn compared to the Bl variation.
Indeed, l is the direction of maximum variance of the magnetic
field, and the Hall field (Bm) should be negligible far from the
reconnection site while Bn should remain essentially constant
throughout the exhaust. To first order, the equation can therefore
be simplified to

∇ ∧ B = ∂nBlum, (11)

where um is the unit vector in the m direction. From there, we
may derive an approximation for the electric current:

je =
∆Bl

µ0∆n
. (12)

The term ∆Bl is computed at the edges of our considered
window, and ∆n = Vn∆t. Following some tests of trial and
error, we set the minimum current required for detection at
j = 0.04 nA/m2.

3.2.4. Application to data from July 16, 2020

We now apply the complete algorithm to July 16, 2020, and
scan 100 scales between 25 s and 850 s. We detect nine poten-
tial reconnection events over this day, which are displayed in
Fig. 2. The algorithm accurately finds the six reconnection
jets (light blue intervals) identified in Lavraud et al. (2021) and
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Fig. 4. Reconnection exhaust detections over 30 days of data from July 14, 2020, at 05:15 to August 13, 2020, at 00:00. Panels a and b show the
magnetic field components and its amplitude, panels c and d display the ion velocity vector components, and panel e shows the ion density. The
blue shaded areas indicate the location of the reconnection exhausts we confirmed (see Table D.1) and panel f displays their occurrence computed
on both a 6h and a 24h window. The red arrows highlight intervals of higher occurrence. Panel g shows the PAD of suprathermal electrons (with
energy superior to 120 eV) normalised to its maximum value in each time bin.

adds two new true detections (dark blue intervals). One inter-
val (07:41:47–07:42:55) is flagged by our algorithm but is not a
reconnection exhaust (red interval). False detections are further
discussed in Sect. 4.1.

3.3. Assumption summary

In the algorithm presented above, several assumptions and
requirements impact the detection and some may be improved
in the future. We list them here for the sake of clarity:

– We assume a dispersion σ in the form of Eq. (4) with a typ-
ical dispersion of σ0 = 2 km s−1 (Louarn et al. 2021) and an
increasing uncertainty of ε = 0.1 km s−1 per point. Increasing
σ0 decreases the number of detections, and this value should
be adapted to the mission considered.

– We assume a prior probability p( jet|ti) of 1% based on
Lavraud et al. (2021). Decreasing p( jet|ti) decreases the

number of detections, and this value might need to be
adapted for different regions of the heliosphere.

– A correlation change is detected on a minimum of two con-
secutive points.

– Bl should reverse over the interval (Tilquin et al. 2020).
– The sign of Bl should remain stable over 10% of the window

length at the beginning and end of the window.
– The maximum Vl variation should be superior to the maxi-

mum variations of Vm and Vn.
– The Vl variation should be at least 30% of the maximum Vl

variation at each exhaust boundary.
– The electric current on the interval should be greater than

0.04 nA/m2.
While some of these values are justified by physical consider-
ations and previous work, others have been set based on the
results of trial and error. Future investigation on how to set
these parameters might further improve the detection algorithm.
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Fig. 5. Illustration of a false detection occurring on July 14, 2020,
between 10:01:31 and 10:07:51. Panels a and b are similar to those
of Fig. 3. Panels c to e compare the quantities ∆V (full lines), ±∆VA
(dashed lines), and −∆VA (dotted lines).

A performance analysis of the algorithm is available in
Appendix B, and shows the impact of changing some of the input
parameters. The detection algorithm is publicly available2.

4. Statistical results

4.1. Algorithm performance

We apply the detection algorithm described in Sect. 3 to Solar
Orbiter data running from July 14, 2020, at 05:15 to August 13,
2020, at 00:00. During this period of about a month, Solar
Orbiter measured the solar wind properties from 0.63 AU to
0.82 AU and we display the solar wind properties in Fig. 4. The
data gaps (Table C.1) in Fig. 4 are due to the absence of either
magnetic field or plasma measurements and amount to 9 days
of missing data; we therefore investigate a total of 20.7 days of
Solar Orbiter measurements. During this period, the algorithm
detects 270 potential jets, and through visual inspection of these
detections we are able to confirm 133 (49%) reconnection events
and reject 137 (51%) false detections.

Such false detections are typically due to deviations from a
unique Alfvénicity sign produced at small scales compared to the
window length, and we show an example in Fig. 5. There, even
though the algorithm detects a change of correlation, a Bl rever-
sal, sufficient current, and sufficient Vl variation, this event can-
not be identified as a reconnection jet. By contrast with Fig. 3,
no obvious current sheet or ion jet is observed in panels a and b.
In panels c to e, we see that ±∆VA shows better agreement with
∆V than −∆VA does, even though the anticorrelation is clear on
the leading edge of the interval. This is due to a slight deviation

2 https://github.com/Nfargette/Magnetic_reconnection/

from Alfvénicity close to the centre of the window, which leads
to large errors between ∆V and −∆VA. Another cause for false
detection (not shown) is that, despite displaying a change of cor-
relation and other required signatures (Sect. 3.2), the presence
of a jet is not sufficiently clear, for instance lacking evidence in
terms of density, temperature, magnetic field magnitude, and so
on. This is the case for the false detection of July 16 (07:41:47-
07:42:55) presented in Sect. 3.1.5.

One of the aims of this study is to analyse reconnection jets
in the solar wind in a close-to exhaustive way. Therefore, we
chose thresholds on the input parameters that were not conserva-
tive so as to increase the number of detections and include even
the shortest jets. This leads to a high FP rate (51%); however, it
remains a goal of the authors to decrease this rate in the future
while detecting as many jets as possible. Adjusting some input
parameters of the current version of the algorithm already allows
a decrease in the FP rate, but at the expense of a decrease in the
number of detections. For instance, increasing the assumed noise
on the PAS data from 2 km s−1 to 5 km s−1 leads to 57 detec-
tions, among which 50 (88%) are reconnection jets and 7 (12%)
are false detections. A performance analysis of the algorithm is
available in Appendix B.

The overall process of running the algorithm and checking
the different detections amounts to 4 to 5 h of work, which is a
significant decrease compared to the time required for finding
jets with visual inspection alone. In parallel, we were able to
visually identify 13 additional reconnection exhausts that were
missed by the detection algorithm. These 13 detections are not
exhaustive and additional work is required to estimate the false-
negative rate of the algorithm. We display the times of the 146
(133+13) reconnection jets we detected in Fig. 4. We also pro-
vide the detailed start and end times in Table C.1. These start
and end dates have been redefined visually to best fit the iden-
tified reconnection jets, and the error made by the algorithm on
the boundaries is around 16% of the jet duration on average.

4.2. Occurrence rate and waiting time

The occurrence rate computed over a 24h window is plotted in
Fig. 4f and we find a global average of 7.0 jets/day. It is visually
striking in Fig. 4 that there exist periods of time in the solar wind
where a large number of reconnection jets occur (red arrows),
while other periods are completely devoid of events. This clus-
tering is made particularly clear by the occurrence rate computed
over 6 hours, which sometimes peaks at 10 events/6h (e.g., July
23) or stays close to zero for extended periods (e.g., July 17,
August 2–3). We further confirm the clustering of reconnection
jets in the solar wind by analysing the waiting time3 distribution
of our reconnection exhausts. If the occurrence was random, as
per a Poisson process, we would expect the waiting time distri-
bution to follow an exponential law with distribution re−rt, with
r the occurrence rate and t the waiting time. In Fig. 6, we display
the observed distribution of the jet waiting time together with
the expected Poisson distribution. While the exponential curve
reproduces the overall trend of waiting times, it does not account
for the amount of observed waiting times below 20 min (two
first bars of the histogram). Long waiting times (>1200 min)
are also unlikely for a Poisson process. We further confirmed
this result by performing this analysis on a previous version of
the magnetic field dataset (L2 V2, not shown), which contains
fewer data gaps. By including 24.3 days of data instead of 20.7,
the clustering of jets becomes even clearer, with waiting times

3 Time elapsed in between two consecutive jets.

A98, page 7 of 15

https://github.com/Nfargette/Magnetic_reconnection/


Fargette, N., et al.: A&A 674, A98 (2023)

Fig. 6. Waiting time distribution of reconnection jets. The blue curve
indicates the expected distribution for a random Poisson process and its
associated uncertainty (1–3σ, grey shaded areas). A preliminary version
of this figure is available in Woodfield et al. (2023), which is based on
a previous version of Solar Orbiter data.

below 40 min being anomalous (more than two standard devia-
tions away) compared to the Poisson distribution.

The fact that reconnection jets seem to cluster in the solar
wind has in fact been pointed out on a larger scale. While
studying 34 reconnection exhausts specifically occurring in high
speed streams over 1 year of Wind data, Gosling (2007) found
that while some exhausts clustered and where separated by
around 2 h, numerous long intervals of several days at a time
displayed no reconnection signatures. With our extended dataset,
we find that this clustering is also present over one month of data
regardless of the solar wind speed.

4.3. Jet properties

In Fig. 7, we show a scatter plot of the duration of reconnec-
tion jets as a function of the magnetic shear across the exhaust.
The latter was computed by taking the B values at the jet bound-
aries. We see that most of our jets occur at low shear angle
(<90◦), which is consistent with previous studies of reconnec-
tion jets in the solar wind and reflects the fact that low shear
current sheets are frequent in the solar wind (Gosling et al.
2007; Phan et al. 2010; Mistry et al. 2017; Tilquin et al. 2020;
Eriksson et al. 2022). The duration of the exhaust mostly stays
below 100 s, and longer jets tend to present a higher magnetic
shear angle. The fact that we do not detect long low shear jets
might be a detection bias as the thresholds we put on the jump
in velocity and the electric current would probably reject those
detections. When we convert the jet duration to width using
the normal crossing velocity Vn and assuming that the ion skin
depth is di = 100 km at 0.7 AU (Verscharen et al. 2019), we find
exhaust width ranging from 6 to 1116di, with a median of 85di.

We further highlight in red the reconnection jets where the
BR component of the magnetic field is not reversed, indicating
that they are not associated with a crossing of the HCS and
probably occur in the turbulent solar wind. These types of jets
constitute the majority of the low-shear/low-duration exhausts
that we detect. For the remaining jets, which reverse the BR com-
ponent, further analysis is required to precisely determine the
context in which they occur.

Fig. 7. Jet duration and shear across the exhaust. Red events show no
reversal of the BR component across the exhaust.

4.4. Solar wind conditions

In order to identify a trigger of magnetic reconnection, we inves-
tigate different solar wind parameters upon its occurrence. In
Fig. 8, we display the joint distribution of the solar wind speed
V , density n, temperature T, and plasma parameter log β for the
whole period of measurements in a corner plot. In the 1D dis-
tributions (top panels), we superimpose the distribution of the
exhaust inflow conditions, which were computed as the median
value of the different parameters on each side of the jets in a
window lasting 30% of the jet duration.

We observe several interesting differences between the stan-
dard solar wind parameter distributions (black histograms) and
the solar wind conditions where magnetic reconnection occurs
(blue histograms). We first observe a small tendency for the jets
to be less likely to occur in the very slow solar wind (around
300 km s−1). This also holds for lower wind temperatures
(<3 eV) due to the correlation between solar wind speed and
temperature (e.g., Burlaga & Ogilvie 1970, Lopez & Freeman
1986). Magnetic reconnections occur less frequently in condi-
tions of higher solar wind speed (>435 km s−1), but such condi-
tions represent a minority in the dataset. In addition, there exists
a clear decrease in the occurrence of reconnections at low density
(<10 cm−3). For the density, the mode of the standard distribu-
tion is not reproduced by the inflow condition distribution.

5. Discussion

Using the novel methodology we present in Sect. 3, we obtain an
occurrence rate of 7.0 reconnection jets per day over 20.7 days
of data, which is higher than previously reported. By way of
comparison, occurrence rates of 1.5 day−1 (Gosling et al. 2007),
0.4 day−1 (Phan et al. 2010), and 0.88 day−1 (Eriksson et al. 2022)
were found using the Wind spacecraft data at 1 AU, which are
of a similar time resolution (3 s) to data from Solar Orbiter (4 s).
The lower reconnection rates found by Gosling et al. (2007) and
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Fig. 8. Solar wind conditions upon the occurrence of magnetic reconnection. The corner plot shows the joint 2D distributions of the solar wind
speed V , plasma parameter log β, temperature T, and density n for the whole period of measurements. The superimposed blue dots indicate the
value of these parameters around the intervals where magnetic reconnection was observed. The top panels of the corner plot then show the 1D
histograms of these quantities for the whole month (in black) and for reconnection inflow conditions (in blue).

Phan et al. (2010) are probably due to the visual method of detec-
tion used rather than the effect of radial distance. In future work,
we shall investigate the occurrence of magnetic reconnection at
varying distances from the Sun. The 0.88 day−1 rate found by
Eriksson et al. (2022), also using an automated method, is sig-
nificantly lower than the 7 day−1 rate we observe. One poten-
tial explanation is that Eriksson et al. (2022) investigate six dis-
crete timescales (between 12 s and 20 min) whereas we span 100
(between 25 s and 14 min). Eriksson et al. (2022) acknowledge
this and state in their work that the set they observe ‘should be
considered as the tip of the proverbial iceberg’. An application
of our algorithm to WIND data for comparison is left for future
work. In total, the reconnection exhausts we detect take up 0.7%
(3.5 h) of our 20.7 days of data, and the average jump in veloc-
ity in the l direction is 6+13

−4 km s−1. Similarly to the conclusion of
Gosling et al. (2007), these rather low values lead us to believe
that these reconnection exhausts do not play a dominant role in
heating and accelerating the solar wind near 0.7 AU.

In Sect. 4.2, we show that, rather than occurring randomly,
reconnection exhausts tend to cluster in the solar wind. The
reason for this clustering remains unclear, but several explana-
tions can be put forward. It is possible that proximity to the
HCS leads to the observation of more events. This is typically

observed closer to the Sun in the PSP data (Phan et al. 2020,
2021; Lavraud et al. 2020) where the HCS is constantly recon-
necting. By looking at the radial component of the magnetic field
and at the 100 s resolution pitch angle distributions (PAD) of
high-energy electrons (>120 eV) in Fig. 4, we can state that the
HCS is probably around July 25 and again around August 11.
Additional HCS crossings or partial crossings might also occur
in the data set. However, the occurrence of reconnection events
does not seem to particularly increase close to these dates com-
pared to the rest of the month. We find that from the 42 events
that occur less than 40 min after another event, 24 (57%) reverse
their BR component while the other 18 do not. This proportion
is slightly higher compared to the proportion of the total num-
ber of events that reverse their BR (46%). It is therefore possible
that skimming of the HCS accounts for part of the clustering.
However, we may not be sure that a BR reversal is associated
with a crossing of the HCS, and the distance to the HCS may
not explain the periods we observe that show a drop in occur-
rence. We therefore explored other potential explanations for the
clustering of reconnection jets.

In order to identify a potential trigger for magnetic recon-
nection, we investigated the prevailing solar wind conditions
in the inflow regions (Sect. 4.4). We show that reconnection is
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Table 1. Interval of solar wind streams resembling the fast solar wind
and with low magnetic reconnection occurrence.

Start End

2020-07-14 15h 2020-07-16 05h
2020-07-17 17h 2020-07-18 12h
2020-08-02 00h 2020-08-05 00h

less likely to occur in the tenuous (<10 cm−3 near 0.7 AU) solar
wind. These periods correspond to streams mostly devoid of
reconnection exhausts occurring on July 14-15, July 17-18,
July 26-27, and August 2-3. A potential explanation might lie
in the nature and origin of these particular streams. The solar
wind is classically divided into two types of wind, which dif-
fer in velocity range, density, composition, variability, and ori-
gin. The fast solar wind can be traced back to coronal holes and
open magnetic field lines in the low corona (e.g., Cranmer 2009),
while the origin of the slow solar wind is less clear and appears
to be associated with the boundaries of coronal holes (e.g., Wang
1994) or with the release of transients through magnetic recon-
nection at the tip of the coronal streamer (e.g., Lapenta & Knoll
2005; Antiochos et al. 2011; Sanchez-Diaz et al. 2017). Several
studies have shown that there exists a type of slow solar wind
that shows the characteristics of the fast solar wind in terms of
Alfvénicity, composition, and density (e.g., Marsch et al. 1981;
D’Amicis & Bruno 2015; D’Amicis et al. 2019). A recent study
focussing on the solar wind stream occurring from July 14 to
July 18, 2020, showed that it actually corresponds to a slow
Afvénic solar wind stream, showing the characteristics of a fast
wind stream and originating from a coronal hole (D’Amicis et al.
2021). In our one-month interval, three streams (Table 1) dis-
play a low occurrence rate of magnetic reconnection while dis-
playing a high degree of Alfvénicity. Let us point out here that
these periods of increased Alfvénicity are also the periods where
the algorithm should perform best (see Sect. 3.1), and yet where
the algorithm detection rate is the lowest. These streams actually
resemble the switchback structures observed by the PSP mis-
sion (Bale et al. 2019; Kasper et al. 2019) with a near constant
B magnitude and frequent BR reversals. We know that magnetic
reconnection is less frequent both in the turbulent high-speed
solar wind (Gosling 2007) and in the highly Alfvénic slow solar
wind observed by PSP close to the Sun (Phan et al. 2020). It is
therefore possible that the source of the solar wind together with
its degree of Alfvénicity play a role in the onset of magnetic
reconnection in the solar wind.

6. Conclusions

The key findings presented in this paper can be summarised as
follows.

– We present a new methodology to detect magnetic recon-
nection exhausts in the solar wind (Sect. 3). This automatic
algorithm relies on the Walén relation, Bayesian inference,
and additional physical considerations. The detection algo-
rithm is publicly available4.

– We apply it to one month of Solar Orbiter data while the
spacecraft was located near 0.7 AU. We are able to confirm
the observation of 146 reconnection exhausts over this period
of observation, leading to an occurrence rate of 7 day−1,
which is higher that previously reported (Sect. 5).

4 https://github.com/Nfargette/Magnetic_reconnection/

– The reconnection exhausts we detect are mostly low shear
and of short duration, consistent with the observations made
at 1 AU (Phan et al. 2010).

– We find that reconnection jets tend to cluster in the solar
wind, as their occurrence is not reproduced by a random dis-
tribution. We show that they are less likely to occur in the
tenuous solar wind.

– We discuss potential reasons for the inhomogeneity of mag-
netic reconnection occurrence and propose a link to the
source and Alfvénicity of the solar wind (Sect. 5).

By providing a tool to quickly identify potential magnetic
reconnection exhausts in situ, we pave the way for broader
statistical studies on magnetic reconnection in diverse plasma
environments.
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Appendix A: Posterior ratio computation

In this Appendix, we detail how we compute a relevant equiva-
lent to the posterior ratio.

Equation (5) states that the likelihood of the data follows a
normal distribution of mean ∆VM(ti, θ) and covariance matrix
σ2

i 1 (4). In three dimensions, the Gaussian distribution writes:

G(x, µ,Σ) =
1

(2π)3/2|Σ|1/2
e
−

1
2

(x − µ)TΣ−1(x − µ)
, (A.1)

with µ the mean vector, Σ the covariance matrix, and |Σ| its deter-
minant. By injecting this expression into Eq. (5), we may write

p(∆V(ti) | ti, θ) = G
(
∆V(ti), ∆VM(ti, θ), σ2

i 1
)

=
1

(2πσ2
i )3/2

e
−

1
2σ2

i

|∆V(ti) − ∆VM(ti, θ)|2 . (A.2)

We then assume independent measurements, which means
that p(∆V | t, θ) =

∏
i

p(∆V(ti) | ti, θ), and, by taking the loga-

rithm of this expression, the log-likelihood of the data writes

ln
(
p(∆V | t̂, θ)

)
=

N∑
i=1

ln p(∆V(ti) | ti, θ)

=

N∑
i=1

−
1

2σ2
i

|∆V(ti) − ∆VM(ti, θ)|2 −
3
2

ln(2πσ2
i )

. (A.3)

We may then compute the posterior probability for each
model through the Bayes equation (eq. (7)) and compute the pos-
terior ratio:

p
(
jet| t̂,∆V

)
p
(
no jet| t̂,∆V

) =

∑
k=3,4

p(θk | t̂,∆V)

∑
k=1,2

p(θk | t̂,∆V)
. (A.4)

Here, the notation ‘jet | t̂ = θ3
⋃
θ4 | t̂ ’, designates the random

variable associated to the event ‘the points in the time window t̂
are part of a reconnection jet’.

As described in Sect. 3.1, this event can occur in one of two
ways: a correlated/anticorrelated or an anticorrelated/correlated
reconnection exhaust (i.e. θ3 or θ4). On the other hand, the com-
plement of this event, (i.e. θ1

⋃
θ2 | t̂), is denoted ‘no jet = jet’.

For each model, the posterior probability can be rewritten as

p(θk | t̂,∆V) =
p(θk | t̂)p(∆V| t̂, θk)

p(∆V| t̂)
. (A.5)

For symmetry considerations, we must have p(θ3| t̂) = p(θ4| t̂) =
p(jet| t̂)/2 a priori, because a correlated/anti-correlated recon-
nection jet is nothing more than an anti-correlated/correlated
reconnection jet through time reversal. We can also consider
that p(θ1| t̂) = p(θ2| t̂) = p(no jet| t̂)/2, because the probabil-
ity of observing either a correlated or an anti-correlated solar
wind relates to being in one or the other magnetic hemisphere.
Moreover, the events ’jet’ and ’no jet’ are complements for a

given window size N, such that p(no jet| t̂) = 1 − p(jet| t̂). Equa-
tion (A.4) can therefore be developed as

p
(
jet| t̂,∆V

)
p
(
no jet| t̂,∆V

) =

(
p(jet| t̂)

1 − p(jet| t̂)

) ∑
k=3,4

p(∆V| t̂, θk)

∑
k=1,2

p(∆V| t̂, θk)
. (A.6)

As it is likely that this ratio will get exponentially small with
N, it is convenient (to compare values between window sizes as
well as for numerical reasons) to define a normalised posterior
ratio Q(̂t) such that

Q(̂t) =

 p
(
jet| t̂,∆V

)
p
(
no jet| t̂,∆V

) 
1/N

. (A.7)

The idea behind this expression is that Q(̂t) would repre-
sent the posterior ratio of a single point if both posteriors could
be expressed as the product of independent probabilities (which
they generally cannot). In our case, this normalised ratio can be
thought of as an average over a given time window t̂. This way,
one can expect to get rid of most of the window’s size depen-
dence in the posterior ratio by using Q(̂t).

To simplify its expression, we may note that p(jet| t̂) ≪ 1
in general. Indeed, if we write p(jet| t̂) as

∏N
i=1 p(jet| ti) with

p(jet| ti) ∼ 0.01, as we assumed in the main part, p(jet| t̂) would
then be inferior to the numerical error for N > 8. Therefore, we
express Q(̂t) as

Q(̂t) = p(jet| t̂)
1
N


∑
k=3,4

p(∆V| t̂, θk)

∑
k=1,2

p(∆V| t̂, θk)


1/N

. (A.8)

Looking at the second part of the expression now, we note
that we are still summing probabilities, and therefore cannot
avoid considering their actual value rather than taking their log-
arithm. However, the p(∆V| θk, t̂) terms are often too small to
compute (as we are multiplying N values below 1) and it would
be more convenient to simplify this expression and only con-
sider ’normalised’ probabilities p(∆V| θk, t̂)1/N . We therefore
proposed the following approximation:

Q(̂t) ' p(jet| t̂)
1
N

∑
k=3,4

p(∆V| t̂, θk)
1
N

∑
k=1,2

p(∆V| t̂, θk)
1
N

. (A.9)

We can note that one term will always dominate the others
either in the numerator or the denominator. The reason is that if
for example the parameter set θ1 were found to properly describe
the data, then the set θ2 would cause the model to predict a
completely anticorrelated data set, thus making its likelihood,
p(∆V| t̂, θ2), very low. In such a case, the approximation∑

k

p(∆V| t̂, θk)

1/N

∼
∑

k

p(∆V| t̂, θk)
1
N (A.10)

makes at most a relative error of order

ε =
1
N

min
k

p(∆V| t̂, θk)

max
k

p(∆V| t̂, θk)
� 1. (A.11)
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Fig. A.1. Variation of the number of detections depending on the input parameter values. Among the detections, the grey bars indicate false
detections while the blue bars are true-positive detections. The background grid (horizontal grey lines) is to guide the eye for the total number of
detections (true and false). The FP rate is also written at the top of each bar.

However, both terms can be of the same order on the
other side of the fraction, the error being maximised when
p(∆V| t̂, θ1) = p(∆V| t̂, θ2) (or respectively p(∆V| t̂, θ3) =
p(∆V| t̂, θ4)). In the latter case, the relative error is

ε = 2
1
N −1 ∼ 1, (A.12)

and is therefore non-negligible. We note that this situation
is not problematic if p(∆V| t̂, θ{1,2}) � p(∆V| t̂, θ{2,1}) and
p(∆V| t̂, θ3) ∼ p(∆V| t̂, θ4), because it would lead to a small
value of Q(̂t) with or without the approximation and thus have
no impact on the jet detections. The only situation where the
approximation can have an impact is if p(∆V| t̂, θ{3,4}) �
p(∆V| t̂, θ{4,3}) and p(∆V| t̂, θ1) ∼ p(∆V| t̂, θ2), where the
Eq. (A.9) underestimates the actual value of Q(̂t) by a factor
of up to 2. We also note that this should not cause any false
detections because it is an underestimation of the actual ratio, but
might cause us to miss jets that are very close to the threshold.
However, this effect should remain marginal because it consists
at most in an additional constant − ln(2) ' −0.7 in lnQ(̂t), to be
compared with the axis scale of Fig. 2.

Appendix B: Algorithm performance

In this section, we analyse how the algorithm performs when we
vary its different input parameters. In Fig. A.1, we show how
the number of detections and FP rate evolve depending on these
parameter values. We see that the number of detections and FP
rate drop rapidly when we increase σ0, the assumed noise on
the PAS data. If one wishes to adopt a conservative approach,
increasing σ0 is the best way to achieve a low FP rate. By
contrast, decreasing p(jet| t̂)

1
N or increasing j seem to decrease

the FP rate without significantly affecting the detection number.
Therefore, these last two parameters might be better fine tuned
in the future to reach an optimum in both the number of detec-
tions and FP rate. Finally, increasing the constraint on the mag-
nitude of the jet decreases the number of detections and FP rate,
as should be expected.

Appendix C: Data gaps

Table C.1. Timetable of data gaps

# Start time End time

1 2020-07-15 06:00 2020-07-15 16:30
2 2020-07-16 01:00 2020-07-16 05:30
3 2020-07-18 03:40 2020-07-20 05:00
4 2020-07-22 05:30 2020-07-22 11:30
5 2020-07-23 14:00 2020-07-24 01:30
6 2020-07-24 22:30 2020-07-26 00:30
7 2020-07-25 11:55 2020-07-25 16:31
8 2020-07-26 18:00 2020-07-27 04:33
9 2020-07-27 07:00 2020-07-27 11:00

10 2020-08-01 11:28 2020-08-01 16:09
11 2020-08-02 16:00 2020-08-02 23:00
12 2020-08-02 23:52 2020-08-03 04:43
13 2020-08-05 03:00 2020-08-05 09:00
14 2020-08-06 00:00 2020-08-08 17:00
15 2020-08-10 00:00 2020-08-10 04:30
16 2020-08-10 07:50 2020-08-11 03:38
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Appendix D: Jet timetable

Table D.1. Timetable of reconnection exhausts

# Date Start time End time

1 2020-07-14 05:36:10 05:36:51
2 2020-07-14 08:14:19 08:15:07
3 2020-07-14 08:39:11 08:39:44
4 2020-07-14 09:35:43 09:36:15
5 2020-07-14 10:42:39 10:43:11
6 2020-07-14 10:45:15 10:47:03
7 2020-07-14 11:05:47 11:07:31
8 2020-07-14 12:01:35 12:02:07
9 2020-07-14 20:02:20 20:02:44
10 2020-07-15 03:09:12 03:10:04
11 2020-07-15 20:01:44 20:02:23
12 2020-07-16 06:56:43 06:57:20
13 2020-07-16 12:34:30 12:38:10
14 2020-07-16 14:27:52 14:28:32
15 2020-07-16 14:56:20 14:56:44
16 2020-07-16 18:28:08 18:42:48
17 2020-07-16 21:21:19 21:21:48
18 2020-07-16 21:56:40 21:57:00
19 2020-07-16 22:01:42 22:02:15
20 2020-07-16 23:01:00 23:02:04
21 2020-07-17 20:58:10 20:58:40
22 2020-07-20 08:10:40 08:17:20
23 2020-07-20 10:31:04 10:33:36
24 2020-07-20 11:28:50 11:30:20
25 2020-07-20 22:41:12 22:43:00
26 2020-07-21 00:44:45 00:46:36
27 2020-07-21 03:24:45 03:25:27
28 2020-07-21 08:33:04 08:33:48
29 2020-07-21 10:08:12 10:09:12
30 2020-07-21 11:04:43 11:05:07
31 2020-07-21 15:17:40 15:22:00
32 2020-07-21 15:51:52 15:52:24
33 2020-07-21 16:05:16 16:05:48
34 2020-07-21 20:40:36 20:43:52
35 2020-07-21 22:06:24 22:07:16
36 2020-07-21 22:49:20 22:49:47
37 2020-07-22 04:20:10 04:22:15
38 2020-07-22 04:35:39 04:36:43
39 2020-07-22 16:01:20 16:01:57

Table D.1. continued.

# Date Start time End time

40 2020-07-22 16:04:00 16:04:29
41 2020-07-22 19:03:11 19:03:30
42 2020-07-22 23:09:37 23:10:13
43 2020-07-23 07:50:00 07:51:09
44 2020-07-23 07:55:28 07:56:38
45 2020-07-23 07:59:59 08:05:27
46 2020-07-23 08:05:39 08:07:37
47 2020-07-23 08:13:42 08:17:20
48 2020-07-23 08:45:35 08:47:21
49 2020-07-23 09:20:00 09:21:00
50 2020-07-23 10:02:36 10:02:51
51 2020-07-23 12:12:21 12:13:17
52 2020-07-23 12:51:09 12:51:50
53 2020-07-23 13:12:33 13:13:21
54 2020-07-23 13:40:00 13:41:06
55 2020-07-23 13:52:36 13:53:18
56 2020-07-23 13:55:21 13:55:57
57 2020-07-24 01:30:30 01:38:00
58 2020-07-24 02:24:00 02:29:16
59 2020-07-24 06:27:41 06:31:41
60 2020-07-24 07:41:53 07:42:45
61 2020-07-24 18:34:19 18:35:35
62 2020-07-24 18:49:23 18:50:11
63 2020-07-24 21:32:55 21:34:25
64 2020-07-25 02:11:09 02:12:34
65 2020-07-25 08:46:51 08:47:39
66 2020-07-25 09:33:20 09:33:38
67 2020-07-25 23:30:12 23:31:49
68 2020-07-26 01:55:54 01:56:18
69 2020-07-26 05:57:15 05:57:55
70 2020-07-27 23:28:47 23:30:39
71 2020-07-28 01:16:53 01:21:10
72 2020-07-28 01:26:34 01:28:17
73 2020-07-28 01:53:21 01:53:40
74 2020-07-28 03:42:53 03:43:35
75 2020-07-28 05:03:37 05:06:25
76 2020-07-28 19:10:49 19:11:21
77 2020-07-29 01:38:21 01:39:03
78 2020-07-29 14:35:21 14:36:19
79 2020-07-29 14:35:25 14:36:30
80 2020-07-29 18:02:50 18:03:18
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Table D.1. continued.

# Date Start time End time

81 2020-07-29 20:53:13 20:53:48
82 2020-07-29 22:11:46 22:12:42
83 2020-07-29 22:14:11 22:15:10
84 2020-07-29 23:33:36 23:34:36
85 2020-07-30 00:43:55 00:44:42
86 2020-07-30 04:29:18 04:30:30
87 2020-07-30 05:55:14 05:56:22
88 2020-07-30 10:12:58 10:13:42
89 2020-07-30 10:40:19 10:41:07
90 2020-07-30 17:23:38 17:27:38
91 2020-07-30 18:25:22 18:25:52
92 2020-07-30 21:45:50 21:47:18
93 2020-07-31 03:17:25 03:18:10
94 2020-07-31 04:14:41 04:14:58
95 2020-07-31 07:53:13 07:55:42
96 2020-07-31 08:09:35 08:13:00
97 2020-07-31 09:56:18 09:58:18
98 2020-07-31 10:00:05 10:01:09
99 2020-07-31 11:13:26 11:15:06
100 2020-07-31 22:57:45 22:58:07
101 2020-07-31 23:19:27 23:19:59
102 2020-08-01 02:29:57 02:30:35
103 2020-08-01 06:02:38 06:05:36
104 2020-08-01 16:52:10 16:53:02
105 2020-08-02 00:33:06 00:34:02
106 2020-08-03 17:23:58 17:24:34
107 2020-08-03 19:09:02 19:09:43
108 2020-08-03 23:46:16 23:48:00
109 2020-08-04 01:34:10 01:35:30
110 2020-08-04 14:08:02 14:08:31
111 2020-08-04 19:51:58 19:52:54
112 2020-08-04 21:16:00 21:16:38
113 2020-08-05 01:20:22 01:20:46
114 2020-08-05 10:08:20 10:09:43
115 2020-08-05 10:49:23 10:49:47

Table D.1. continued.

# Date Start time End time

116 2020-08-05 11:34:00 11:37:45
117 2020-08-05 18:44:48 18:45:51
118 2020-08-05 18:51:30 18:53:00
119 2020-08-05 20:22:54 20:23:44
120 2020-08-05 20:35:23 20:36:47
121 2020-08-08 17:11:41 17:18:45
122 2020-08-08 18:19:37 18:22:00
123 2020-08-08 19:49:07 19:49:59
124 2020-08-09 01:12:22 01:13:41
125 2020-08-09 01:17:30 01:18:15
126 2020-08-09 11:56:43 11:59:30
127 2020-08-09 22:28:35 22:29:07
128 2020-08-11 03:57:03 03:57:58
129 2020-08-11 11:19:19 11:19:43
130 2020-08-11 13:48:33 13:48:46
131 2020-08-11 13:53:11 13:53:35
132 2020-08-11 15:20:06 15:20:20
133 2020-08-11 15:49:45 15:50:35
134 2020-08-11 16:53:31 16:54:55
135 2020-08-11 17:08:20 17:10:00
136 2020-08-11 17:17:50 17:18:09
137 2020-08-11 18:22:03 18:23:27
138 2020-08-11 19:43:03 19:43:27
139 2020-08-11 20:10:59 20:11:23
140 2020-08-11 20:49:04 20:49:31
141 2020-08-11 20:57:07 20:57:25
142 2020-08-11 23:11:47 23:12:27
143 2020-08-12 04:59:27 04:59:51
144 2020-08-12 07:22:00 07:26:49
145 2020-08-12 09:02:32 09:02:56
146 2020-08-12 09:09:56 09:11:16

Notes. Reconnection exhausts detected between July 14, 2020, at 05:15
and August 13, 2020, at 00:00. Bold lines highlight the nine reconnec-
tion exhausts that were not detected by the algorithm.
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