1,057 research outputs found

    On the almost sure central limit theorem for ARX processes in adaptive tracking

    Full text link
    The goal of this paper is to highlight the almost sure central limit theorem for martingales to the control community and to show the usefulness of this result for the system identification of controllable ARX(p,q) process in adaptive tracking. We also provide strongly consistent estimators of the even moments of the driven noise of a controllable ARX(p,q) process as well as quadratic strong laws for the average costs and estimation errors sequences. Our theoretical results are illustrated by numerical experiments

    Associations between subjective and objective visual function in patients with unilateral macular holes

    Get PDF
    AbstractForty-six patients with uniocular macular holes and unaffected, fellow eyes were studied to evaluate inter- and intraocular associations between various objective tests of visual function and perceived visual ability. The affected eye had significant associations between visual acuity (VA) and the fovea threshold test, but for the fellow eye only VA and low-contrast VA 10% were associated. The reduction in visual acuity under low-contrast conditions relative to high-contrast did not differ between the affected eye and the healthy eye. Subjective visual ability seems to depend more on the visual acuity of the affected eye than the healthy eye

    Feedback Systems: An Introduction for Scientists and Engineers

    Get PDF
    This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of disciplines, illustrating the generality of many of the tools while at the same time showing how they can be applied in specific application domains. A major goal of this book is to present a concise and insightful view of the current knowledge in feedback and control systems. The field of control started by teaching everything that was known at the time and, as new knowledge was acquired, additional courses were developed to cover new techniques. A consequence of this evolution is that introductory courses have remained the same for many years, and it is often necessary to take many individual courses in order to obtain a good perspective on the field. In developing this book, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods. This book was originally developed for use in an experimental course at Caltech involving students from a wide set of backgrounds. The course was offered to undergraduates at the junior and senior levels in traditional engineering disciplines, as well as first- and second-year graduate students in engineering and science. This latter group included graduate students in biology, computer science and physics. Over the course of several years, the text has been classroom tested at Caltech and at Lund University, and the feedback from many students and colleagues has been incorporated to help improve the readability and accessibility of the material. Because of its intended audience, this book is organized in a slightly unusual fashion compared to many other books on feedback and control. In particular, we introduce a number of concepts in the text that are normally reserved for second-year courses on control and hence often not available to students who are not control systems majors. This has been done at the expense of certain traditional topics, which we felt that the astute student could learn independently and are often explored through the exercises. Examples of topics that we have included are nonlinear dynamics, Lyapunov stability analysis, the matrix exponential, reachability and observability, and fundamental limits of performance and robustness. Topics that we have deemphasized include root locus techniques, lead/lag compensation and detailed rules for generating Bode and Nyquist plots by hand. Several features of the book are designed to facilitate its dual function as a basic engineering text and as an introduction for researchers in natural, information and social sciences. The bulk of the material is intended to be used regardless of the audience and covers the core principles and tools in the analysis and design of feedback systems. Advanced sections, marked by the “dangerous bend” symbol shown here, contain material that requires a slightly more technical background, of the sort that would be expected of senior undergraduates in engineering. A few sections are marked by two dangerous bend symbols and are intended for readers with more specialized backgrounds, identified at the beginning of the section. To limit the length of the text, several standard results and extensions are given in the exercises, with appropriate hints toward their solutions. To further augment the printed material contained here, a companion web site has been developed and is available from the publisher’s web page: http://press.princeton.edu/titles/8701.html The web site contains a database of frequently asked questions, supplemental examples and exercises, and lecture material for courses based on this text. The material is organized by chapter and includes a summary of the major points in the text as well as links to external resources. The web site also contains the source code for many examples in the book, as well as utilities to implement the techniques described in the text. Most of the code was originally written using MATLAB M-files but was also tested with LabView MathScript to ensure compatibility with both packages. Many files can also be run using other scripting languages such as Octave, SciLab, SysQuake and Xmath. The first half of the book focuses almost exclusively on state space control systems. We begin in Chapter 2 with a description of modeling of physical, biological and information systems using ordinary differential equations and difference equations. Chapter 3 presents a number of examples in some detail, primarily as a reference for problems that will be used throughout the text. Following this, Chapter 4 looks at the dynamic behavior of models, including definitions of stability and more complicated nonlinear behavior. We provide advanced sections in this chapter on Lyapunov stability analysis because we find that it is useful in a broad array of applications and is frequently a topic that is not introduced until later in one’s studies. The remaining three chapters of the first half of the book focus on linear systems, beginning with a description of input/output behavior in Chapter 5. In Chapter 6, we formally introduce feedback systems by demonstrating how state space control laws can be designed. This is followed in Chapter 7 by material on output feedback and estimators. Chapters 6 and 7 introduce the key concepts of reachability and observability, which give tremendous insight into the choice of actuators and sensors, whether for engineered or natural systems. The second half of the book presents material that is often considered to be from the field of “classical control.” This includes the transfer function, introduced in Chapter 8, which is a fundamental tool for understanding feedback systems. Using transfer functions, one can begin to analyze the stability of feedback systems using frequency domain analysis, including the ability to reason about the closed loop behavior of a system from its open loop characteristics. This is the subject of Chapter 9, which revolves around the Nyquist stability criterion. In Chapters 10 and 11, we again look at the design problem, focusing first on proportional-integral-derivative (PID) controllers and then on the more general process of loop shaping. PID control is by far the most common design technique in control systems and a useful tool for any student. The chapter on frequency domain design introduces many of the ideas of modern control theory, including the sensitivity function. In Chapter 12, we combine the results from the second half of the book to analyze some of the fundamental trade-offs between robustness and performance. This is also a key chapter illustrating the power of the techniques that have been developed and serving as an introduction for more advanced studies. The book is designed for use in a 10- to 15-week course in feedback systems that provides many of the key concepts needed in a variety of disciplines. For a 10-week course, Chapters 1–2, 4–6 and 8–11 can each be covered in a week’s time, with the omission of some topics from the final chapters. A more leisurely course, spread out over 14–15 weeks, could cover the entire book, with 2 weeks on modeling (Chapters 2 and 3) — particularly for students without much background in ordinary differential equations — and 2 weeks on robust performance (Chapter 12). The mathematical prerequisites for the book are modest and in keeping with our goal of providing an introduction that serves a broad audience. We assume familiarity with the basic tools of linear algebra, including matrices, vectors and eigenvalues. These are typically covered in a sophomore-level course on the subject, and the textbooks by Apostol [10], Arnold [13] and Strang [187] can serve as good references. Similarly, we assume basic knowledge of differential equations, including the concepts of homogeneous and particular solutions for linear ordinary differential equations in one variable. Apostol [10] and Boyce and DiPrima [42] cover this material well. Finally, we also make use of complex numbers and functions and, in some of the advanced sections, more detailed concepts in complex variables that are typically covered in a junior-level engineering or physics course in mathematical methods. Apostol [9] or Stewart [186] can be used for the basic material, with Ahlfors [6], Marsden and Hoffman [146] or Saff and Snider [172] being good references for the more advanced material. We have chosen not to include appendices summarizing these various topics since there are a number of good books available. One additional choice that we felt was important was the decision not to rely on a knowledge of Laplace transforms in the book. While their use is by far the most common approach to teaching feedback systems in engineering, many students in the natural and information sciences may lack the necessary mathematical background. Since Laplace transforms are not required in any essential way, we have included them only in an advanced section intended to tie things together for students with that background. Of course, we make tremendous use of transfer functions, which we introduce through the notion of response to exponential inputs, an approach we feel is more accessible to a broad array of scientists and engineers. For classes in which students have already had Laplace transforms, it should be quite natural to build on this background in the appropriate sections of the text. Acknowledgments: The authors would like to thank the many people who helped during the preparation of this book. The idea for writing this book came in part from a report on future directions in control [155] to which Stephen Boyd, Roger Brockett, John Doyle and Gunter Stein were major contributors. Kristi Morgansen and Hideo Mabuchi helped teach early versions of the course at Caltech on which much of the text is based, and Steve Waydo served as the head TA for the course taught at Caltech in 2003–2004 and provided numerous comments and corrections. Charlotta Johnsson and Anton Cervin taught from early versions of the manuscript in Lund in 2003–2007 and gave very useful feedback. Other colleagues and students who provided feedback and advice include Leif Andersson, John Carson, K. Mani Chandy, Michel Charpentier, Domitilla Del Vecchio, Kate Galloway, Per Hagander, Toivo Henningsson Perby, Joseph Hellerstein, George Hines, Tore Hägglund, Cole Lepine, Anders Rantzer, Anders Robertsson, Dawn Tilbury and Francisco Zabala. The reviewers for Princeton University Press and Tom Robbins at NI Press also provided valuable comments that significantly improved the organization, layout and focus of the book. Our editor, Vickie Kearn, was a great source of encouragement and help throughout the publishing process. Finally, we would like to thank Caltech, Lund University and the University of California at Santa Barbara for providing many resources, stimulating colleagues and students, and pleasant working environments that greatly aided in the writing of this book

    Non-universality of elastic exponents in random bond-bending networks

    Full text link
    We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod networks with freely rotating cross-links. Near the transition, networks are dominated by bending modes and the elastic modulii vanish with an exponent f=3.0\pm0.2, in contrast with central force percolation which shares the same geometric exponents. This indicates that universality for geometric quantities does not imply universality for elastic ones. The implications of this result for actin-fiber networks is discussed.Comment: 4 pages, 3 figures, minor clarifications and amendments. To appear in PRE Rap. Com

    Geochemistry of Calcite Veins: Records of Fluid Mixing and Fluid-Rock Interaction

    Get PDF
    AbstractDetailed geochemical investigations of calcite veins, genetically related to intrusions and vein-hosting bedrock, have been used to indicate fluid evolution during intrusion-related hydrothermal mineralization, involving fluid mixing and water rock interaction. The area of investigation is located in the southeast of Sweden. The 1.85 Ga granitoid country rocks and the 0.9 Ga dolerite vein-related intrusions differ in chemical, geochemical, and stable isotope composition. The variation in rare earth and stable isotope composition across calcite veins and the presence of two groups of fluid inclusions suggests mixing of two types of fluids. Light rare earth enrichment and increasing 87Sr/86Sr-ratios suggest water rock interaction of one/both fluids

    PI controller tuning for load disturbance rejection using constrained optimization

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg. In this paper, a simple and effective PI controller tuning method is presented. To take both performance requirements and robustness issues into consideration, the design technique is based on optimization of load disturbance rejection with a constraint either on the gain margin or phase margin. In addition, a simplified form of the resulting tuning formulae is obtained for first order plus dead time models. To demonstrate the ability of the proposed tuning technique in dealing with a wide range of plants, simulation results for several examples, including integrating, non-minimum phase and long dead time models, are provided

    Estimating radar positions using unmanned air vehicle teams engaged in cooperative deception

    Get PDF
    Standard TDOA (time-difference of arrival) estimation techniques are modified and applied to locate networked enemy radars using a cooperative team of unmanned electronic combat air vehicles (ECAVs). The team is engaged in deceiving the radars, which limits where the ECAVs can fly and requires accurate radar positions to be known. Two TDOA measurements of radar pulses taken by two ECAV pairs are used to estimate the position of the middle radar. A nonlinear system model for estimation is formulated and used to perform simulations with "noisy" TDOAs; a linearized time-varying model for straight nominal ECAV trajectories is derived from the nonlinear model. The choice of optimal ECAV trajectories and an observer to minimize the variance of the middle radar position - using the linearized model is addressed. Application of a time-varying Kalman filter to the linearized system shows drastic improvement in reducing the variance of position estimates when compared to the original nonlinear system via simulations

    Kramers-Kronig, Bode, and the meaning of zero

    Full text link
    The implications of causality, as captured by the Kramers-Kronig relations between the real and imaginary parts of a linear response function, are familiar parts of the physics curriculum. In 1937, Bode derived a similar relation between the magnitude (response gain) and phase. Although the Kramers-Kronig relations are an equality, Bode's relation is effectively an inequality. This perhaps-surprising difference is explained using elementary examples and ultimately traces back to delays in the flow of information within the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea

    Steady-State Cracks in Viscoelastic Lattice Models II

    Full text link
    We present the analytic solution of the Mode III steady-state crack in a square lattice with piecewise linear springs and Kelvin viscosity. We show how the results simplify in the limit of large width. We relate our results to a model where the continuum limit is taken only along the crack direction. We present results for small velocity, and for large viscosity, and discuss the structure of the critical bifurcation for small velocity. We compute the size of the process zone wherein standard continuum elasticity theory breaks down.Comment: 17 pages, 3 figure
    corecore