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Abstract— Standard TDOA (Time-Difference of Arrival)
estimation techniques are modified and applied to locate net-
worked enemy radars using a cooperative team of unmanned
Electronic Combat Air Vehicles (ECAVs). The team is engaged
in deceiving the radars, which limits where the ECAVs can
fly and requires accurate radar positions to be known. Two
TDOA measurements of radar pulses taken by two ECAV
pairs are used to estimate the position of the middle radar.
A nonlinear system model for estimation is formulated and
used to perform simulations with “noisy” TDOAs; a linearized
time-varying model for straight nominal ECAV trajectories
is derived from the nonlinear model. The choice of optimal
ECAV trajectories and an observer to minimize the variance
of the middle radar position—using the linearized model—is
addressed. Application of a time-varying Kalman Filter to the
linearized system shows drastic improvement in reducing the
variance of position estimates when compared to the original
nonlinear system via simulations.

I. INTRODUCTION

The Estimation Problem here is connected to the Co-

operative Deception Problem in [1], [2]: using unmanned

Electronic Combat Air Vehicles (ECAVs) to cooperatively

deceive an enemy radar network by causing the network to

detect and track the motion of a phantom or nonexistent

air vehicle. A radar network is defined as two or more

radars that share track files to correlate a target. Methods

for generating a phantom target are restricted to range-delay

techniques applied through the radar mainlobe. For a team

of ECAVs—generally one per radar—to succeed against the

radar network, each ECAV’s trajectory must satisfy several

dynamic limitations in [2]; also, each radar’s position must

be accurately known by the ECAV assigned to it.

Radar position estimation is addressed using TDOA

(Time-Difference of Arrival) techniques. To generate a

TDOA measurement, each of two ECAVs uses a synchro-

nized internal clock to record a time stamp on the arrival of

a unique encoded radar pulse, and the difference between

the two times is taken. Knowledge of one TDOA places

the transmitting radar on a hyperbolic curve on the ground.

Thus, based on two or more measurements, the radar’s

position can be estimated by taking the (correct) intersection

of the hyperbolas. The estimate will not be exact due to

electronic measurement noise and synchronization error of
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the ECAV clocks, which is based on using GPS for timing;

see [3] and chapter 11 of [4] for more details.

One key point is that the choice of ECAV trajectories

flown significantly affects the accuracy of the radar position

estimates determined through TDOA techniques. Hence, it

is important to find ECAV trajectories that will minimize

the variance of these estimates. Another key point is that

even the best ECAV trajectories will cause unacceptable

variance in the radar position estimates; however, knowing

the distribution of the TDOA measurement error allows

effective filtering of the estimation system. Assuming a

Gaussian distribution, a time-varying Kalman Filter applied

to a linearized position estimation system can significantly

reduce the variance of estimates as compared to the original

unfiltered nonlinear system. Again, minimizing this variance

through filtering and selection of optimal ECAV control

inputs/trajectories will then maximize the coherency of the

phantom track for the radar network.

II. THE DECEPTION PROBLEM BACKGROUND

Assuming that an ECAV is stealthy and knows the

maximum operational range, Rmax, and location of a radar

with pulse-to-pulse agility, the ECAV can intercept and send

delayed returns of the radar’s transmitted pulses so that the

radar sees a phantom target at a range beyond the ECAV but

closer than Rmax. Fig. 1 illustrates how three ECAVs could

cooperatively create a single phantom track by using range-

delay; this figure defines the constant-elevation scenario that

will be used for the Estimation Problem from here on.

To move with the phantom track in Fig. 1, each ECAV

behaves much like a bead on a string that is rotating at

some variable rate; the ECAV may slide up or down freely

but must rotate with the LOS (line of sight) from the radar

to the phantom track. An ECAV trying to generate a given

phantom track will have one constraint, θ, and one DOF

(degree of freedom). To fully define an ECAV trajectory,

this remaining DOF is then constrained by specifying any

other ECAV variable of motion. Fig. 2 relates the relevant

variables, where E is ECAV and T is phantom target.

Without loss of generality, θ̇ is assumed positive and

given by the pre-determined phantom track. Parametric

equations for the track in Fig. 1 are given below; see Fig. 2

for most of the variables used. The phantom track angle

(between each radar’s initial LOS and the track heading),

ψi, and initial range, R0i, are different for each radar, where
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↓ phantom target

phantom track

ECAV trajectory

3 ECAVs ↑

3 radars →

line of sight (LOS)

Fig. 1. Cooperative Deception of a Three-Radar Network by ECAVs
Generating a Straight Phantom Track

i indexes the radar/ECAV pairs from left to right in Fig. 1.

Ri(t) =
√

R0i
2 + υT

2t2 − 2R0iυT t cos ψi (1)

θi(t) = arcsin
(

υT t sin ψi

Ri(t)

)
(2)

θ̇i(t) =
R0iυT sin ψi

Ri
2(t)

(3)

To create the phantom track, each ECAV flies a bearing

from its radar of θi(t) and uses range-delay techniques

to create a phantom target at the range Ri(t). Since a

reasonable way to control an ECAV is to steer it by way of

a rudder, a dynamical system is sought that describes the

motion of the ECAV in terms of its course, φEi, as the input

(for simplicity, the dynamics between the rudder fin and

ECAV course are neglected). The following nonautonomous

system, derived from Fig. 2, is used for this purpose.

ṙi(t) = riθ̇i(t) cot φEi, ri(0) = r0i (4)

Based on the ECAV dynamics, φEi is restricted to be

piecewise continuously differentiable. Since θ̇i cannot be

zero, 0 < φEi < π is also required. Once the ith ECAV

has chosen its course φEi(t), its range ri(t) is completely

specified by (4); this profile, together with θi(t) from

the given phantom track, completely defines the ECAV’s

trajectory, which may be solved using (1)–(4). Note that,

to remain in sync with the phantom track, the ECAV must

constantly adjust its speed to satisfy υE =
√

(rθ̇)2 + (ṙ)2.

III. DETAILS OF TDOA POSITION ESTIMATION

In measuring TDOAs, it is assumed that the ECAVs

have GPS-synchronized clocks and that each ECAV is able

to detect pulses projected from radar sidelobes, which are

much weaker in power than pulses from the mainlobe. To

simplify analysis, only the position of the middle radar

is estimated using two TDOA measurements1 from ECAV

1If more than two measurements are used, then the system of equations
is overdetermined, and methods such as nonlinear least squares may be
used as in [5] to find the “average” position estimate.

r

R
r
dot

r θ
dot
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υ
T

θ

φ
E

radar

LOS →
E

T

Fig. 2. ECAV and Phantom Track Variables and Their Relations

d
1

r
2

d
3

position estimate →
is the intersection 2 hyperbolas

based on 2 TDOAs

Fig. 3. Estimation of Middle Radar Position by Three ECAVs Using
TDOA Techniques, without Noise

pairs 1-2 and 3-2. With only two hyperbolas generated by

these measurements, more than one intersection will result

as in Fig. 3; however, the correct intersection nearest the

true position of the middle radar can be uniquely identified

by discriminating all intersections as the ECAVs move or

assuming a general location for the radar is already known.

Finally, the variance of the middle radar’s position estimate

is not injected back into the phantom track equations used

by the middle ECAV to fly its trajectory.

Fig. 3 illustrates how two noise-free TDOA measure-

ments are used to determine the position of the middle

radar. The two hyperbolas in the figure correspond to the

TDOAs converted to distance-differences in the following

two equations. In these equations, c is the speed of light

and τi is the arrival time of the middle radar pulse at the

ith ECAV; the other variables used are shown in Fig. 3.

∆1 := c

TDOAs︷ ︸︸ ︷
(τ1 − τ2) = d1 − r2 (5)

∆3 := c (τ3 − τ2) = d3 − r2 (6)

Only ∆1 and ∆3 can be measured—the arrival times and

distances are unknown. With white noise injected into the

TDOA measurements to approximate the combined effect
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(a) Parallel with Phantom Track (b) Circular around Radars

Fig. 4. Variance of Radar Position Estimates over Time for Different
ECAV Trajectories but Identical Distributions of Measurement Noise

of electronic measurement noise and synchronization error

of the ECAV clocks2, hyperbolic bands are created due to

the variation in TDOA measurements over time while the

ECAVs remain fixed in place. Intuitively, the variance of

the radar position estimates due to noise will be minimized

when the ECAVs are more spread apart in angle.

Fig. 4(a) shows typical position estimates of the middle

radar calculated over time as the ECAVs fly from right to

left, parallel to the phantom track. Fig. 4(b) differs only in

the circular ECAV trajectories about each radar. In the first

scenario, the position estimates are scattered significantly

in range as well as in angle; in the second, the position

estimates are scattered more in range and less in angle.

Thus, Fig. 4 shows that different ECAV trajectories can

significantly change the variance of radar position estimates

when TDOA techniques are used, which motivates the need

for a minimum-variance control strategy for the ECAVs.

In addition, it was verified that even the better ECAV

trajectories produce unacceptable error in position estimates

when TDOA estimation is used without filtering.

IV. NONLINEAR AND LINEAR ESTIMATION MODELS

To minimize the variance of the radar position

estimates—in this case, only the position estimates of the

middle radar—a nonlinear TDOA estimation model is pre-

sented and then linearized about reasonable nominal ECAV

trajectories. Let (x0, y0) be the true position of the middle

radar and ei a Wiener process, then introduce the following.

ξ :=
[

r1 r2 r3 x0 y0

]T
u :=

[
φE1 φE2 φE3

]T
η :=

[
∆1 ∆3

]T
de

dt
:=

[
de1
dt

de3
dt

]T
The state, ξ, contains the ranges for each ECAV from its

respective radar, and the actual position of the middle radar.

2A first-order Guass-Markov process would be more accurate here
according to [4], but a Gaussian random process is used for simplicity.

The control input, u, contains the courses for each ECAV

relative to its bearing θi (see Fig. 2 above). The measured

output, η, contains the actual TDOA measurements con-

verted to distance as shown in (5)–(6), and the white noise,
de
dt , represents TDOA measurement error.

The nonlinear system for TDOA estimation of the middle

radar position formally becomes the following, by using

(1)–(6); (xi, yi) is the position of the ith ECAV, and

(pxi, pyi) is the position of the ith radar.

ξ̇ =

⎡
⎢⎢⎢⎢⎣

r1θ̇1(t) cot φE1

r2θ̇2(t) cot φE2

r3θ̇3(t) cot φE3

0
0

⎤
⎥⎥⎥⎥⎦ = f(ξ,u, t) (7)

η =
[√

(x1(t) − x0)2 + (y1(t) − y0)2 − r2√
(x3(t) − x0)2 + (y3(t) − y0)2 − r2

]
+

de

dt

= g(ξ, t) +
de

dt
, (8)

where

xi(t) = pxi + ri cos(θi(t) + ψi)
yi(t) = pyi + ri sin(θi(t) + ψi)

Linearizing around a trajectory (ξ(t),u(t))nom gives

δ̇ξ = A(t)δξ + B(t)δu

δη = C(t)δξ + 0 δu +
de

dt
,

where the Jacobians ∂f
∂ξ , ∂f

∂u , and ∂g
∂ξ are evaluated at the

nominal trajectory to get A(t), B(t), and C(t), respectively.

The nominal control input and corresponding trajectory

for the system state are chosen so that each ECAV flies

parallel to the phantom track as in Fig. 1, hence

unom(t) =

⎡
⎣π − ψ1 − θ1(t)

π − ψ2 − θ2(t)
π − ψ3 − θ3(t)

⎤
⎦ =

⎡
⎣5π/6 − θ1(t)

2π/3 − θ2(t)
π/2 − θ3(t)

⎤
⎦ rad

ξnom(t) =
[

R1(t)/2 R2(t)/2 R3(t)/2 0 0
]T

km.

In reality, the last two components of ξnom would be

an initial guess for (x0, y0); however, the true position is

used here to show the theoretical best-case performance for

estimation. The linearized equations can be written as

δ̇ξi =

{
θ̇i cot unomi

δξi − Riθ̇i

2 sin2 unomi
δui i = 1, 2, 3

0 i = 4, 5
(9)

δη =
[

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

]
δξ +

de

dt
, (10)
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where

c11 =
x1

nom cos(θ1 + π/6) + y1
nom sin(θ1 + π/6)

d1
nom

c12 = c22 = −1
c13 = c21 = 0
c14 = −x1

nom/d1
nom

c15 = −y1
nom/d1

nom

c23 =
x3

nom cos(θ3 + π/2) + y3
nom sin(θ3 + π/2)

d3
nom

c24 = −x3
nom/d3

nom

c25 = −y3
nom/d3

nom,

and Ri, θi, θ̇i, unomi
, xi, yi, and di (see Fig. 3 above)

are functions of time. The superscript nom indicates that

nominal values have been substituted in for state variables.

The parameters for (pxi, pyi), ψi, and R0i were chosen to

match Fig. 1, where the phantom track length is 26 km.

The linearized system (9)–(10) was confirmed observable

except at the initial and final times (observability does not

hold in general for all ξnom,unom—take e.g. the Fig. 4(b)

scenario). The average condition number of the observabil-

ity matrix was approximately 1000. Thus, the middle radar

position may be observed through the measured output, and

the estimate will be sensitive to measurement error.

V. MINIMUM VARIANCE ESTIMATION THEORY

Given a general linear system model in the form of a

stochastic differential equation (see [6] for theory),

dξ = A(t)ξ dt + B(t)u dt + dv (11)

η dt = C(t)ξ dt + de, (12)

where v and e are independent Wiener processes with zero

mean and incremental covariances of Rvdt and Redt, the

minimum variance observer and observer error are

dξ̂ = A(t)ξ̂ dt + B(t)u dt + K(t)
[
η dt − C(t)ξ̂ dt

]
(13)

dξ̃ = [A(t) − K(t)C(t)] ξ̃ dt + dv + K(t)de, (14)

K(t) = P (t)CT(t)Re
−1, (15)

dP

dt
= A(t)P + PAT(t) + Rv − PCT(t)Re

−1C(t)P,

P (0) = P0. (16)

Above, K(t) is the observer gain, ξ̂ is the estimate of the

state, and ξ̃ := ξ−ξ̂ is the error. The state covariance matrix

is P (t) := E(ξ̃ξ̃T), where E is the expectation. Rv = 0
because there is assumed no noise in the ECAV dynamics,

and P0 must be chosen.

VI. THE LINEARIZED SYSTEM WITH OBSERVER

Because the linearized system (9)–(10) fits the form in

(11)–(12) and is observable, it is a suitable candidate for

applying the time-varying Kalman Filter or observer in (13)

and (15)–(16) to estimate the position of the middle radar.

The block diagram in Fig. 5 shows the basic scheme for this

System

dt
de

utC

utBtA

0)(

)()(

Observer

ˆˆ

)()(ˆ)()()(ˆ

I

u
tKtBtCtKtA

nom

)(tK

ˆ ˆ

Gain matrix

PtCRtCPtAPPtAP

RtCtPtK

e
TT

e
T

)()()()(

)()()(
1

1

Cov. matrix DRE

u

Fig. 5. Block Diagram of the Linearized Filtered System for Estimation

design. The overall system contains 25 state variables: 5 for

δξ, 5 for δξ̂, and 15 for P , which is symmetric. Simulations

following use the scheme in Fig. 5 to assess the observer’s

theoretical best-case performance with ξnom known. For

practical implementation, the true nominal position of the

middle radar will be unknown; thus, an estimate must be

used for ξnom, which will add a bias to ξ̂ and change the

linearized matrices in the observer. The matrices of the

linearized system itself will not be affected because they

model physical reality, i.e. what is actually measured based

on the true position of the radar. Preliminary experiments

indicate that bringing the full measurement η into the

observer and updating online the estimate for ξnom is a

workable solution to this problem.

Since only the last two system state variables are es-

timated, and those two state variables have no dynamics,

most of the components of P and terms in (16) are zero. The

differential equation for the nonzero terms of P—a subset of

the last term for dP
dt in (16)—is shown below, where p44 and

p55 are the variance of the middle radar position estimates,

x̂0 and ŷ0, respectively. The scalar Re represents the noise

intensity for each of the TDOA measurements. Recall that

(xi, yi) and di are the ECAV positions and distances to the

middle radar, and the superscript nom means that nominal

values have replaced state variables.[
ṗ44 ṗ45

ṗ45 ṗ55

]
=: ˙̄P = − 1

Re
P̄ C̄T(t)C̄(t)P̄ , (17)

C̄(t) =
[ −x1

nom/d1
nom −y1

nom/d1
nom

−x3
nom/d3

nom −y3
nom/d3

nom

]

Rewriting (17) in component-form and using the fact that

the middle radar is located at the origin gives

ṗ44 =
−1
Re

⎡
⎢⎣
(

x1
nom

y1nom p44 + p55

)2

(
x1nom

y1nom

)2

+ 1
+

(
x3

nom

y3nom p44 + p45

)2

(
x3nom

y3nom

)2

+ 1

⎤
⎥⎦ (18)

ṗ55 =
−1
Re

⎡
⎢⎣
(

y1
nom

x1nom p55 + p45

)2

(
y1nom

x1nom

)2

+ 1
+

(
y3

nom

x3nom p55 + p45

)2

(
y3nom

x3nom

)2

+ 1

⎤
⎥⎦.(19)
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Using (17)–(19), the following theorem is now proven.

Theorem 1: Consider the linearized equations (9)–(16),

which are connected as shown in Fig. 5. If the middle radar

is stationary, then the variance of its position estimates,

p44 + p55, converges to zero.

Proof: Based on the physical constraints of the Coop-

erative Deception Problem, ECAVs 1 and 3 will never fly

opposed at 0 or 180 degrees relative to the middle radar;

continuing with this fact, get

⇔ x1

y1
�= x3

y3
⇔ x1y3 − x3y1 �= 0

⇔ det C̄ =
(x1y3)nom − (x3y1)nom

(d1d3)nom
�= 0.

Setting ˙̄P to zero in (17) and with C̄ now invertible, get

0 = P̄ C̄TC̄P̄ =
(
C̄P̄

)T(
C̄P̄

)
⇔ C̄P̄ = 0 ⇔ P̄ = 0,

which shows that 0 is the unique equilibrium for P̄ . Finally,

(18) and (19) show that ṗ44 and ṗ55 are nonpositive, which

means that p44 and p55 are monotonically nonincreasing.

Also, by definition p44 and p55 are bounded below by zero.

Therefore, lim p44 and lim p55 exist and must equal 0.

Steady-state will not be reached in practice since the

deception process occurs in a short time. It is therefore

desirable that the variance of the position estimates decrease

as rapidly as possible over this time interval. Observing

(17), the rate of change of P̄ can be altered by choos-

ing a different nominal trajectory for linearizing (7)–(8).

Choosing unom(t) determines ξnom(t), which completely

specifies C̄(t) in (17) through the nominal ECAV positions,

(xi
nom(t), yi

nom(t)), and their distances to the middle

radar, di
nom(t). Thus, unom(t) should be chosen to make

ṗ44 and ṗ55 in (17) or (18)–(19) as negative as possible. This

insight shows how selecting an optimal nominal control

input could help to further decrease the variance of the

middle radar position estimates over a finite time interval.

VII. SIMULATIONS OF THE NONLINEAR SYSTEM AND

LINEARIZED SYSTEM WITH OBSERVER

The linearized system with observer in Fig. 5 is now

compared with the nonlinear system (7)–(8) for position

estimation of the middle radar. The equations are integrated

in MATLAB using “ode45” with results shown in Fig. 6.

Deviations from the nominal control input are chosen to

shift the nominal heading of the ECAVs by ±7.5 degrees.

The phantom track has a speed of 200 m/s, and the ECAVs

fly within 20% of 100 m/s. The deception process requires

approximately 130 seconds. The noise intensity of each

TDOA measurement is set to Re = 0.0001 km2/Hz,

which corresponds to a measurement/synchronization error

of 30 m (1σ) with a measurement taken every 0.1 seconds.

For the linearized system, an arbitrary choice is made

for the initial position estimate. For each simulation, an

aerial view of the scenario is shown at the top with the

middle radar position estimates of the nonlinear and linear

systems magnified by factors of 3 and 50, respectively,

for observation. The time average of the variance of the

estimates is plotted at the bottom for the nonlinear system.

For the linear system, the time average and the ensemble

average, p44 + p55, are both plotted at the bottom.

In Fig. 6(a) where the ECAVs fly toward the radars, the

variance of the position estimates approaches 0.1 km2 at

the end of the time interval. In contrast, Fig. 6(b) where

the ECAVs move away from the radars shows this variance

increasing to approximately 0.3 km2. The key difference

between these two scenarios is that, as time increases, the

ECAVs are more spread apart in angle relative to the middle

radar when they fly toward the radars. Even though certain

ECAV trajectories do result in lower variance, it is too large

for successful deception.

For the same ECAV trajectories, Fig. 6(c) and Fig. 6(d)

show the performance of the filtered linearized system. The

estimation accuracy is much improved. The variance of the

position estimates reaches 2×10−5 km2 (standard deviation

of 4 m) at the end of the deception process with an initial

position estimate error for the middle radar of 0.05 km

and 0.1 km in the x and y directions, respectively. As

shown earlier in Theorem 1, the variance of these estimates

converges to zero, but only as time goes to infinity. The

difference in the time and ensemble averages of the variance

for the linearized system diminishes as time increases. A

nice feature of the linearized filtered system is that the initial

conditions of the covariance matrix can be chosen to cause

either the x or y component of the radar position estimates

to converge faster to its true location. This option might

be practically valuable because the radar angle relative to

an ECAV is more important than its range in terms of

minimizing the variance of the phantom track itself. In

summary, the linearized system with observer provides great

improvement over the unfiltered nonlinear system—at least

near the straight ECAV trajectories it was linearized around.

VIII. CONCLUSION

Position estimation using TDOA techniques was explored

and a nonlinear model developed for estimating the position

of one radar using two TDOA measurements. Simulating

the nonlinear model with a closed-form solution for the

position estimate showed that using different ECAV trajec-

tories significantly affects the variance of the estimates.

A linearized time-varying model was developed from

the nonlinear one using the ECAV courses as inputs; the

model was observable and compared well with the nonlinear

model when used to simulate ECAV trajectories. A time-

varying Kalman Filter was then constructed and applied to

the linearized system. Further analysis of this filtered system

showed that the variance of its position estimates for the

middle radar converges to zero with time. Simplification of

the state covariance matrix showed how choosing certain

nominal control inputs, hence ECAV trajectories, can further

minimize the variance of the position estimates over a
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(b) NLS with ECAVs flying out

Control Input δu = 7.5°
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(c) FLS with ECAVs flying in

Control Input δu = −7.5°
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(d) FLS with ECAVs flying out

Fig. 6. Simulations of the Nonlinear System (NLS) for Position Estimation Compared with Simulations of the Filtered Linearized System (FLS)

finite time interval. Comparison of the linearized system

with observer to the unfiltered nonlinear system showed

through simulation that the linearized system is effective in

converging to the true location of the middle radar, whereas

the nonlinear system is not. Practically, the performance of

the filtered system would depend on how good the initial

estimate of the radar location is.

The use of more than two TDOA measurements would

increase the estimation accuracy and should be investigated;

in this case, with a closed-form solution no longer known,

other methods would be required such as nonlinear least

squares—see [5]. It would also be beneficial to investigate

performance of the Extended Kalman Filter with reasonable

initial guesses for the true radar location. Finally, other

realistic sources of error in the radar position estimates,

such as wind disturbances on the ECAVs and inaccurate

ECAV positions, could be included in the system model.
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