17 research outputs found

    Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants

    No full text
    Synopsis image Glial cell line derived neurotrophic factor (GDNF) improves survival in toxin-models of Parkinson's disease and is currently undergoing clinical development, however the protective mechanism is elusive. This study provides evidence that the GDNF receptor Ret rescues defects of a genetic Parkinson model and proposes a new mechanism-of-action. Active Ret overexpression rescues muscle degeneration and mitochondrial morphology in muscles and dopamine neurons in Pink1 mutant Drosophila. In human neuroblastoma cells, GDNF treatment rescues mitochondrial fragmentation caused by Pink1 knockdown. Ret signaling improves mitochondrial respiration and activity of complex I, providing a potential novel mechanism for the protective effect of GDNF/Ret. Abstract Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN)(2B)) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN)(2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD

    RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns

    Get PDF
    RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates

    Parkin–phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity

    Get PDF
    RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin–phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism

    TRAP1 rescues PINK1 loss-of-function phenotypes

    No full text
    PTEN-induced kinase 1 (PINK1) is a serine/threonine kinase that is localized to mitochondria. It protects cells from oxidative stress by suppressing mitochondrial cytochrome c release, thereby preventing cell death. Mutations in Pink1 cause early-onset Parkinson's disease (PD). Consistently, mitochondrial function is impaired in Pink1-linked PD patients and model systems. Previously, in vitro analysis implied that the protective effects of PINK1 depend on phosphorylation of the downstream factor, TNF receptor-associated protein 1 (TRAP1). Furthermore, TRAP1 has been shown to mitigate α-Synuclein-induced toxicity, linking α-Synuclein directly to mitochondrial dysfunction. These data suggest that TRAP1 seems to mediate protective effects on mitochondrial function in pathways that are affected in PD. Here we investigated the potential of TRAP1 to rescue dysfunction induced by either PINK1 or Parkin deficiency in vivo and in vitro. We show that overexpression of human TRAP1 is able to mitigate Pink1 but not parkin loss-of-function phenotypes in Drosophila. In addition, detrimental effects observed after RNAi-mediated silencing of complex I subunits were rescued by TRAP1 in Drosophila. Moreover, TRAP1 was able to rescue mitochondrial fragmentation and dysfunction upon siRNA-induced silencing of Pink1 but not parkin in human neuronal SH-SY5Y cells. Thus, our data suggest a functional role of TRAP1 in maintaining mitochondrial integrity downstream of PINK1 and complex I deficits but parallel to or upstream of Parkin

    The E3 ligase Parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO.

    No full text
    Parkin, a RING-between-RING-type E3 ubiquitin ligase associated with Parkinson's disease, has a wide neuroprotective activity, preventing cell death in various stress paradigms. We identified a stress-protective pathway regulated by parkin that links NF-kappa B signaling and mitochondrial integrity via linear ubiquitination. Under cellular stress, parkin is recruited to the linear ubiquitin assembly complex and increases linear ubiquitination of NF-kappa B essential modulator (NEMO), which is essential for canonical NF-kappa B signaling. As a result, the mitochondrial guanosine triphosphatase OPA1 is transcriptionally upregulated via NF-kappa B-responsive promoter elements for maintenance of mitochondrial integrity and protection from stress-induced cell death. Parkin-induced stress protection is lost in the absence of either NEMO or OPA1, but not in cells defective for the mitophagy pathway. Notably, in parkin-deficient cells linear ubiquitination of NEMO, activation of NF-kappa B, and upregulation of OPA1 are significantly reduced in response to TNF-alpha stimulation, supporting the physiological relevance of parkin in regulating this antiapoptotic pathway
    corecore