1,156 research outputs found
Long-term effects of brand placement disclosure on persuasion knowledge and brand responses
Various studies have examined the short-term effects of brand placement disclosures. This study aims to (1) replicate previously identified short-term effects of brand placement disclosures on persuasion knowledge and brand responses, and, more importantly, (2) examine whether these effects persist, diminish, or grow in the long-term. We conducted an online experiment (N = 208) in which we compared the effects of including a disclosure (vs. no disclosure) in two waves (short-term, measured directly after watching the programme vs. long-term, measured two to three weeks later). Our results show that a disclosure increases ad recognition (i.e. conceptual persuasion knowledge) immediately after exposure, and that this effect persists even a few weeks after watching the programme. Moreover, a disclosure enhances brand memory via ad recognition, in both the short- and the long-term. However, resistance effects on skepticism (attitudinal persuasion knowledge), brand attitude and purchase intention are neither replicated in the short-term nor found in the long-term
Oscillating enzyme-bound NADH in glycolysis
AbstractIn glycolyzing cell-free cytoplasmic medium extracted from yeast Saccharomyces cerevisiae, the action spectrum of oscillation has an absorption maximum around 335 nm, nearly coinciding with that of the yeast alcohol dehydrogenase (ADH)-NADH complex due to its bound NADH. Our approximate calculations based on the amount of this enzyme and coenzyme NADH present in the extract suggest that the ADH-NADH complex alone can account for 90% or more of the total absorbance change
Periodic heat production by oscillating glycolysis in a cytoplasmic medium extracted from yeast
AbstractThe rate of heat production in a periodically glycolysing cell-free cytoplasmic medium extracted from yeast Saccharomyces cerevisiae is measured with a batch calorimeter. The rate exhibits periodic variations of approx. 10% of the average heat production rate of about 54 mJml per minute. From this rate and the enthalpy change fro glycolysis a glucose degradation rate of 0.43 mMming is calculated. The value fits into the ‘oscillatory window’ determined by a glucose injection technique
Dynamic Front Transitions and Spiral-Vortex Nucleation
This is a study of front dynamics in reaction diffusion systems near
Nonequilibrium Ising-Bloch bifurcations. We find that the relation between
front velocity and perturbative factors, such as external fields and curvature,
is typically multivalued. This unusual form allows small perturbations to
induce dynamic transitions between counter-propagating fronts and nucleate
spiral vortices. We use these findings to propose explanations for a few
numerical and experimental observations including spiral breakup driven by
advective fields, and spot splitting
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
Dynamical spin correlations in Heisenberg ladder under magnetic field and correlation functions in SO(5) ladder
The zero-temperature dynamical spin-spin correlation functions are calculated
for the spin-1/2 two-leg Heisenberg ladder in a magnetic field above the lower
critical field Hc1. The dynamical structure factors are calculated which
exhibit both massless and massive excitations. These modes appear in different
sectors characterized by the parity in the rung direction and by the momentum
in the direction of the chains. The structure factors have power-law
singularities at the lower edges of their support. The results are also
applicable to spin-1 Heisenberg chain. The implications are briefly discussed
for various correlation functions and the pi-resonance in the SO(5) symmetric
ladder model.Comment: 15 pages, 6 figures, added references; final version to appear in
Phys. Rev.
The liquid-vapor interface of an ionic fluid
We investigate the liquid-vapor interface of the restricted primitive model
(RPM) for an ionic fluid using a density-functional approximation based on
correlation functions of the homogeneous fluid as obtained from the
mean-spherical approximation (MSA). In the limit of a homogeneous fluid our
approach yields the well-known MSA (energy) equation of state. The ionic
interfacial density profiles, which for the RPM are identical for both species,
have a shape similar to those of simple atomic fluids in that the decay towards
the bulk values is more rapid on the vapor side than on the liquid side. This
is the opposite asymmetry of the decay to that found in earlier calculations
for the RPM based on a square-gradient theory. The width of the interface is,
for a wide range of temperatures, approximately four times the second moment
correlation length of the liquid phase. We discuss the magnitude and
temperature dependence of the surface tension, and argue that for temperatures
near the triple point the ratio of the dimensionless surface tension and
critical temperature is much smaller for the RPM than for simple atomic fluids.Comment: 6 postscript figures, submitted to Phys. Rev.
Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field
We establish the existence of a hidden degree of freedom and the critical
states of a spinless electron system in a spatially-correlated random magnetic
field with vanishing mean. Whereas the critical states are carried by the
zero-field contours of the field landscape, the hidden degree of freedom is
recognized as being associated with the formation of vortices in these special
contours. It is argued that, as opposed to the coherent backscattering
mechanism of weak localization, a new type of scattering processes in the
contours controls the underlying physics of localization in the random magnetic
field system. In addition, we investigate the role of vortices in governing the
metal-insulator transition and propose a renormalization-group diagram for the
system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in
quality for e-submissio
Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory
We present lattice calculations for the ground state energies of tritium,
helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our results were
previously summarized in a letter publication. This paper provides full details
of the calculations. We include isospin-breaking, Coulomb effects, and
interactions up to next-to-next-to-leading order in chiral effective field
theory.Comment: 38 pages, 11 figures, final publication versio
- …