35,219 research outputs found
Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae
We assess the importance of the magneto-rotational instability in
core-collapse supernovae by an analysis of the growth rates of unstable modes
in typical post-collapse systems and by numerical simulations of simplified
models. The interplay of differential rotation and thermal stratification
defines different instability regimes which we confirm in our simulations. We
investigate the termination of the growth of the MRI by parasitic
instabilities, establish scaling laws characterising the termination amplitude,
and study the long-term evolution of the saturated turbulent state.Comment: 6 pages, 1 figure. To appear in Proceedings of 4th International
Conference on Numerical Modeling of Space Plasma Flows (Chamonix 2009
Test of constancy of speed of light with rotating cryogenic optical resonators
A test of Lorentz invariance for electromagnetic waves was performed by
comparing the resonance frequencies of two optical resonators as a function of
orientation in space. In terms of the Robertson-Mansouri-Sexl theory, we obtain
, a ten-fold improvement compared to
the previous best results. We also set a first upper limit for a so far unknown
parameter of the Standard Model Extension test theory,
.Comment: 4 pages, 2 figures, accepted for publication Phys. Rev. A (2005
Topology and confinement at T \neq 0 : calorons with non-trivial holonomy
In this talk, relying on experience with various lattice filter techniques,
we argue that the semiclassical structure of finite temperature gauge fields
for T < T_c is dominated by calorons with non-trivial holonomy. By simulating a
dilute gas of calorons with identical holonomy, superposed in the algebraic
gauge, we are able to reproduce the confining properties below T_c up to
distances r = O(4 fm} >> \rho (the caloron size). We compute Polyakov loop
correlators as well as space-like Wilson loops for the fundamental and adjoint
representation. The model parameters, including the holonomy, can be inferred
from lattice results as functions of the temperature.Comment: Talk by M. M\"uller-Preussker at "Quark Confinement and Hadron
Structure VII", Ponta Delgada, Azores, Portugal, September 2 - 7, 2006, 4
pages, 2 figures, to appear in the Proceeding
Reactions at polymer interfaces: A Monte Carlo Simulation
Reactions at a strongly segregated interface of a symmetric binary polymer
blend are investigated via Monte Carlo simulations. End functionalized
homopolymers of different species interact at the interface instantaneously and
irreversibly to form diblock copolymers. The simulations, in the framework of
the bond fluctuation model, determine the time dependence of the copolymer
production in the initial and intermediate time regime for small reactant
concentration . The results are compared to
recent theories and simulation data of a simple reaction diffusion model. For
the reactant concentration accessible in the simulation, no linear growth of
the copolymer density is found in the initial regime, and a -law is
observed in the intermediate stage.Comment: to appear in Macromolecule
Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems
The properties of polymer liquids on hard and soft substrates are
investigated by molecular dynamics simulation of a coarse-grained bead-spring
model and dynamic single-chain-in-mean-field (SCMF) simulations of a soft,
coarse-grained polymer model. Hard, corrugated substrates are modelled by an
FCC Lennard-Jones solid while polymer brushes are investigated as a
prototypical example of a soft, deformable surface. From the molecular
simulation we extract the coarse-grained parameters that characterise the
equilibrium and flow properties of the liquid in contact with the substrate:
the surface and interface tensions, and the parameters of the hydrodynamic
boundary condition. The so-determined parameters enter a continuum description
like the Stokes equation or the lubrication approximation.Comment: 41 pages, 13 figure
Enhanced dielectrophoresis of nanocolloids by dimer formation
We investigate the dielectrophoretic motion of charge-neutral, polarizable
nanocolloids through molecular dynamics simulations. Comparison to analytical
results derived for continuum systems shows that the discrete charge
distributions on the nanocolloids have a significant impact on their coupling
to the external field. Aggregation of nanocolloids leads to enhanced
dielectrophoretic transport, provided that increase in the dipole moment upon
aggregation can overcome the related increase in friction. The dimer
orientation and the exact structure of the nanocolloid charge distribution are
shown to be important in the enhanced transport
Integrability in Yang-Mills theory on the light cone beyond leading order
The one-loop dilatation operator in Yang-Mills theory possesses a hidden
integrability symmetry in the sector of maximal helicity Wilson operators. We
calculate two-loop corrections to the dilatation operator and demonstrate that
while integrability is broken for matter in the fundamental representation of
the SU(3) gauge group, for the adjoint SU(N_c) matter it survives the conformal
symmetry breaking and persists in supersymmetric N=1, N=2 and N=4 Yang-Mills
theories.Comment: 4 pages, 2 figure
Signs of strong Na and K absorption in the transmission spectrum of WASP-103b
Context: Transmission spectroscopy has become a prominent tool for
characterizing the atmospheric properties on close-in transiting planets.
Recent observations have revealed a remarkable diversity in exoplanet spectra,
which show absorption signatures of Na, K and , in some cases
partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and
hazes) themselves have been detected in the transmission spectra of several
planets thanks to wavelength-dependent slopes caused by the particles'
scattering properties. Aims: We present an optical 550 - 960 nm transmission
spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest
(2500 K) and most massive (1.5 ) planets yet to be studied with this
technique. WASP-103b orbits its star at a separation of less than 1.2 times the
Roche limit and is predicted to be strongly tidally distorted. Methods: We have
used Gemini/GMOS to obtain multi-object spectroscopy hroughout three transits
of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2
nm to infer the planet's transmission spectrum. Results: We find that WASP-103b
shows increased absorption in the cores of the alkali (Na, K) line features. We
do not confirm the presence of any strong scattering slope as previously
suggested, pointing towards a clear atmosphere for the highly irradiated,
massive exoplanet WASP-103b. We constrain the upper boundary of any potential
cloud deck to reside at pressure levels above 0.01 bar. This finding is in line
with previous studies on cloud occurrence on exoplanets which find that clouds
dominate the transmission spectra of cool, low surface gravity planets while
hot, high surface gravity planets are either cloud-free, or possess clouds
located below the altitudes probed by transmission spectra.Comment: Accepted for publication in A&
A compact dual atom interferometer gyroscope based on laser-cooled rubidium
We present a compact and transportable inertial sensor for precision sensing
of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type
atom interferometer operated with laser-cooled Rb. Raman processes are
employed to coherently manipulate the matter waves. We describe and
characterize the experimental apparatus. A method for passing from a compact
geometry to an extended interferometer with three independent atom-light
interaction zones is proposed and investigated. The extended geometry will
enhance the sensitivity by more than two orders of magnitude which is necessary
to achieve sensitivities better than rad/s/.Comment: 9 pages, 8 figure
- …