1,399 research outputs found

    Potentials for AI-Based Data-Driven Business Models in Industry 4.0

    Get PDF
    Whereas the topics of artificial intelligence (AI) and business model innovation have attracted significant attention in academic research, publications at the intersection of both topics are rather sparse. In response, this paper attempts to interconnect the topics conceptually. In particular, it focuses on AI-driven business models in the context of Industry 4.0, highlighting examples and applications in the industrial context. In industry, first applications of AI applications have been known since several decades, such as in pattern recognition by cameras for failure detection. While applications in process or quality optimization have been improved since then, the clear connection to business models is not always clear. Therefore, this paper attempts to differentiate between examples of AI-driven business models that monetize, e.g., process optimization, or data-driven approaches of entire industrial platforms. In doing so, the present paper presents an overview of categories for AI-driven business model innovation across several industrial examples. As a result, future research can adopt and advance this overview to catego

    Development of a Risk Framework for Industry 4.0 in the Context of Sustainability for Established Manufacturers

    Get PDF
    The concept of “Industry 4.0” is expected to bring a multitude of benefits for industrial value creation. However, the associated risks hamper its implementation and lack a comprehensive overview. In response, the paper proposes a framework of risks in the context of Industry 4.0 that is related to the Triple Bottom Line of sustainability. The framework is developed from a literature review, as well as from 14 in-depth expert interviews. With respect to economic risks, the risks that are associated with high or false investments are outlined, as well as the threatened business models and increased competition from new market entrants. From an ecological perspective, the increased waste and energy consumption, as well as possible ecological risks related to the concept “lot size one”, are described. From a social perspective, the job losses, risks associated with organizational transformation, and employee requalification, as well as internal resistance, are among the aspects that are considered. Additionally, risks can be associated with technical risks, e.g., technical integration, information technology (IT)-related risks such as data security, and legal and political risks, such as for instance unsolved legal clarity in terms of data possession. Conclusively, the paper discusses the framework with the extant literature, proposes managerial and theoretical implications, and suggests avenues for future research

    The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells

    Get PDF
    BACKGROUND: Dendritic cells (DC) are the most potent antigen-presenting cells (APC) with the unique ability to activate naïve T cells and to initiate and maintain primary immune responses. Immunosuppressive and anti-inflammatory stimuli on DC such as the cytokine IL-10 suppress the activity of the transcription factor NF-κB what results in downregulation of costimulatory molecules, MHC and cytokine production. Glycoprotein NMB (GPNMB) is a transmembrane protein, which acts as a coinhibitory molecule strongly inhibiting T cell responses if present on APC. Interestingly, its expression on human monocyte-derived dendritic cells (moDC) is dramatically upregulated upon treatment with IL-10 but also by the BCR-ABL tyrosine kinase inhibitors (TKI) imatinib, nilotinib or dasatinib used for the treatment of chronic myeloid leukemia (CML). However, the molecular mechanisms responsible for GPNMB overexpression are yet unknown. RESULTS: The immunosuppressive cytokine IL-10 and the BCR-ABL TKI imatinib or nilotinib, that were examined here, concordantly inhibit the PI3K/Akt signaling pathway, thereby activating the downstream serine/threonine protein kinase GSK3ß, and subsequently the microphthalmia-associated transcription factor (MITF) that is phosphorylated and translocated into the nucleus. Treatment of moDC with a small molecule inhibitor of MITF activity reduced the expression of GPNMB at the level of mRNA and protein, indicating that GPNMB expression is in fact facilitated by MITF activation. In line with these findings, PI3K/Akt inhibition was found to result in GPNMB overexpression accompanied by reduced stimulatory capacity of moDC in mixed lymphocyte reactions (MLR) with allogeneic T cells that could be restored by addition of the GPNMB T cell ligand syndecan-4 (SD-4). CONCLUSIONS: In summary, imatinib, nilotinib or IL-10 congruently inhibit the PI3K/Akt signaling pathway thereby activating MITF in moDC, resulting in a tolerogenic phenotype. These findings extend current knowledge on the molecular mechanisms balancing activating and inhibitory signals in human DC and may facilitate the targeted manipulation of T cell responses in the context of DC-based immunotherapeutic interventions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12964-015-0099-5) contains supplementary material, which is available to authorized users

    Геологическое строение, нефтегазоносность и подсчет запасов газа пласта ПК1 Антипаютинского газового месторождения (ЯНАО)

    Get PDF
    На основе комплексной интерпретации данных сейсморазведки 3D, данных ГИС и испытания пласта в разведочных скважинах обосновано геологическое строение газовой залежи пласта ПК1 Антипаютинского месторождения. Проведен обобщающий анализ результатов лабораторных исследований кернов, пластовых флюидов, промыслово-геофизических и газогидродинамических исследований изучаемого объекта. Построены карты кровли коллекторов пласта ПК1, поверхности межфлюидного контакта, эффективных газонасыщенных толщин пласта. Дано обоснование подсчётных параметров, определяемых по данным ГИС (коэффициенты пористости, газонасыщенности, эффективные газонасыщенные толщины). На основе построенной детальной геологической модели проведён дифференцированный подсчёт запасов газа.On the basis of complex interpretation this seismic exploration 3D, data of GIS and test of layer in prospecting wells the geological structure of a gas deposit of PK1 layer of the Antipayutinsky field is proved. The generalizing analysis of results of laboratory researches of cores, formation fluids, trade and geophysical and gas-hydrodynamic researches of the studied object is carried out. Cards of a roof of collectors of PK1 layer, a surface of interfluid contact, effective gas-saturated thickness of layer are constructed. Justification of the subcalculating parameters determined by data of GIS (coefficients of porosity, gas saturation, effective gas-saturated thickness) is given. On the basis of the constructed detailed geological model the differentiated calculation of reserves of ga

    The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice

    Get PDF
    Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7

    Full text link
    We report the results of low temperature transport, specific heat and magnetisation measurements on high quality single crystals of the bilayer perovskite Sr3Ru2O7, which is a close relative of the unconventional superconductor Sr2RuO4. Metamagnetism is observed, and transport and thermodynamic evidence for associated critical fluctuations is presented. These relatively unusual fluctuations might be pictured as variations in the Fermi surface topography itself. No equivalent behaviour has been observed in the metallic state of Sr2RuO4.Comment: 4 pages, 4 figures, Revtex 3.

    Calibration of the oxygen and clumped isotope thermometers for (proto-)dolomite based on synthetic and natural carbonates

    Get PDF
    Dolomite is a very common carbonate mineral in ancient sediments, but is rarely found in modern environments. Because of the difficulties in precipitating dolomite in the laboratory at low temperatures, the controls on its formation are still debated after more than two centuries of research. Two important parameters to constrain the environment of dolomitization are the temperature of formation and the oxygen isotope composition of the fluid from which it precipitated. Carbonate clumped isotopes (expressed with the parameter Δ47) are increasingly becoming the method of choice to obtain this information. However, whereas many clumped isotope studies treated dolomites the same way as calcite, some recent studies observed a different phosphoric acid fractionation for Δ47 during acid digestion of dolomite compared to calcite. This causes additional uncertainties in the Δ47 temperature estimates for dolomites analyzed in different laboratories using different acid digestion temperatures. To tackle this problem we present here a (proto-)dolomite-specific Δ47-temperature calibration from 25 to 1100 °C for an acid reaction temperature of 70 °C and anchored to widely available calcite standards. For the temperature range 25 to 220 °C we obtain a linear Δ47-T relationship based on 289 individual measurements with R2 of 0.864: [Formula presented] Tin Kelvin When including two isotopically scrambled dolomites at 1100 °C, the best fit is obtained with a third order polynomial temperature relationship (R2 = 0.924): [Formula presented]. Applying a calcite Δ47-T relationship produced under identical laboratory conditions results in 3 to 16 °C colder calculated formation temperatures for dolomites (with formation temperature from 0 to 100 °C) than using the (proto-)dolomite specific calibration presented here. For the synthetic samples formed between 70 and 220 °C we also determined the temperature dependence of the oxygen isotope fractionation relative to the water. Based on the similarity between our results and two other recent studies (Vasconcelos et al., 2005 and Horita, 2014) we propose that a combination of the three datasets represents the most robust calibration for (proto-)dolomite formed in a wide temperature range from 25 to 350 °C. 103αCaMg−carbonates−Water=2.9923±0.0557×[Formula presented]−2.3592±0.4116 Because of the uncertainties in the phosphoric acid oxygen and clumped isotope fractionation for (proto-)dolomite, we promote the use of three samples that are available in large amounts as possible inter-laboratory reference material for oxygen and clumped isotope measurements. A sample of the middle Triassic San Salvatore dolomite from southern Switzerland, the NIST SRM 88b dolomite standard already reported in other Δ47 studies and a lacustrine Pliocene dolomite from La Roda (Spain). This study demonstrates the necessity to apply (proto-)dolomite specific Δ47-T relationships for accurate temperature estimates of dolomite formation, ideally done at identical acid digestion temperatures to avoid additional uncertainties introduced by acid digestion temperature corrections. In addition, the simultaneous analyses of dolomite reference material will enable a much better comparison of published dolomite clumped and oxygen isotope data amongst different laboratories

    The ground state of Sr3Ru2O7 revisited; Fermi liquid close to a ferromagnetic instability

    Full text link
    We show that single-crystalline Sr3Ru2O7 grown by a floating-zone technique is an isotropic paramagnet and a quasi-two dimensional metal as spin-triplet superconducting Sr2RuO4 is. The ground state is Fermi liquid with very low residual resistivity (3 micro ohm cm for in-plane currents) and a nearly ferromagnetic metal with the largest Wilson ratio Rw>10 among paramagnets so far. This contrasts with the ferromagnetic order at Tc=104 K reported on single crystals grown by a flux method [Cao et al., Phys. Rev. B 55, R672 (1997)]. We have also found a dramatic changeover from paramagnetism to ferromagnetism under applied pressure. This suggests the existence of a substantial ferromagnetic instability on the verge of a quantum phase transition in the Fermi liquid state.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B : Rapid co
    corecore