3,499 research outputs found

    The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity

    Full text link
    Some key results obtained in joint research projects with Alex M\"uller are summarized, concentrating on the invention of the barocaloric effect and its application for cooling as well as on important findings in the field of high-temperature superconductivity resulting from neutron scattering experiments.Comment: 26 pages, 9 figure

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes

    Get PDF
    Due to the scarcity of observational constraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. The aim of this study is to improve upon the existing bottom-up estimates, and to investigate the temporal evolution of the fluxes in Asia over 1979-2012. To this purpose, we calculate the hourly emissions at 0.5& deg; & times;0.5 & deg; resolution using the MEGAN-MOHYCAN model driven by ECMWF ERA-Interim climatology. In order to remedy for known biases identified in previous studies, and to improve the simulation of interannual variability and trends in emissions, this study incorporates (i) changes in land use, including the rapid expansion of oil palms, (ii) meteorological variability according to ERA-Interim, (iii) long-term changes in solar radiation (dimming/brightening) constrained by surface network radiation measurements, and (iv) recent experimental evidence that South Asian tropical forests are much weaker isoprene emitters than previously assumed, and on the other hand, that oil palms have a strong isoprene emission capacity. These effects lead to a significant lowering (factor of 2) in the total isoprene fluxes over the studied domain, and to emission reductions reaching a factor of 3.5 in Southeast Asia. The bottom-up annual isoprene emissions for 2005 are estimated at 7.0, 4.8, 8.3, and 2.9 Tg in China, India, Indonesia and Malaysia, respectively. The isoprene flux anomaly over the whole domain and studied period is found to be strongly correlated with the Oceanic Niño Index ( Combining double low line 0.73), with positive (negative) anomalies related to El Niño (La Niña) years. Changes in temperature and solar radiation are the major drivers of the interannual variability and trends in the emissions, except over semi-arid areas such as northwestern China, Pakistan and Kazakhstan, where soil moisture is by far the main cause of interannual emission changes. In our base simulation, annual positive flux trends of 0.2% and 0.52% throughout the entire period are found in Asia and China, respectively, related to a positive trend in temperature and solar radiation. The impact of oil palm expansion in Indonesia and Malaysia is to enhance the trends over that region, e.g., from 1.17% to 1.5% in 1979-2005 in Malaysia. A negative emission trend is derived in India (ĝ'0.4%), owing to the negative trend in solar radiation data associated with the strong dimming effect likely due to increasing aerosol loadings. The bottom-up emissions are compared to field campaign measurements in Borneo and South China and further evaluated against top-down isoprene emission estimates constrained by GOME-2/MetOp-A formaldehyde columns through 2007-2012. The satellite-based estimates appear to support our assumptions, and confirm the lower emission rate in tropical forests of Indonesia and Malaysia. Additional flux measurements are clearly needed to characterize the spatial variability of emission factors better. Finally, a decreasing trend in the inferred top-down Chinese emissions since 2007 is in line with recorded cooling in China after that year, thus suggesting that the satellite HCHO columns are able to capture climate-induced changes in emissions. © 2014 Author(s)

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

    Get PDF
    Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter–wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection
    corecore