794 research outputs found

    Kinematics of the South Atlantic rift

    Full text link
    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times (\approx126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial \approx17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the equatorial Atlantic domain, resulting in both progressively increasing extensional velocities as well as a significant rotation of the extension direction to NE-SW. Final breakup between South America and Africa occurred in the conjugate Santos--Benguela margin segment at around 113 Ma and in the Equatorial Atlantic domain between the Ghanaian Ridge and the Piau\'i-Cear\'a margin at 103 Ma. We conclude that such a multi-velocity, multi-directional rift history exerts primary control on the evolution of this conjugate passive margins systems and can explain the first order tectonic structures along the South Atlantic and possibly other passive margins.Comment: 46 Pages, 22 figures. Submitted to Solid Earth (http://www.solid-earth.net). Abstract shortened due to arXiv restrictions. New version contains revisions and amendments as per reviewers requests. Supplementary data is available at http://datahub.io/en/dataset/southatlanticrif

    Addition of histamine to subcutaneously injected Plasmodium berghei sporozoites increases the parasite liver load and could facilitate whole-parasite vaccination

    Get PDF
    Background: Whole-parasite immunization remains the benchmark in malaria vaccine development. A major bottleneck in the translation of whole-parasite immunization towards routine vaccination is the mode of administration, since high degrees of protection are currently only achieved by intravenous, and not by intradermal or subcutaneous injection of viable parasites. It is known that only a small proportion of subcutaneously administered parasites reach the subsequent liver stage and low parasite liver load was shown to be associated with low protective efficacy. The objective of this analysis was to evaluate whether the liver load following subcutaneous parasite injection could be augmented by co-administration of pro-inflammatory or anti-coagulatory drugs. Methods: In the C57BL/6 Plasmodium berghei ANKA model, the clinical outcome (time to patent blood stage infection and survival) and relative parasite liver load was assessed in mice infected by subcutaneous or intramuscular sporozoite (SPZ) administration in the presence or absence of histamine and heparin supplementation in comparison to intravenously administered SPZ. In addition, a vaccination experiment was carried out to assess the protective efficacy of an improved, histamine-supplemented subcutaneous immunization regimen. Results: The parasite liver load following subcutaneous SPZ administration can be significantly increased by co-administration of histamine and heparin. A dose-dependent relation between parasite liver load and histamine dosage was observed. However, despite a relatively high parasite liver load, the protective efficacy of histamine-supplemented subcutaneous immunization remains inferior as compared to intravenous SPZ administration. Conclusions: Histamine supplementation might facilitate the future development of a non-intravenous whole-parasite vaccine. Further investigations are needed to reveal the effect of histamine supplementation and subcutaneous SPZ administration on the acquisition of protective immunity

    Evaluation of the efficacy of essential oils of Lavandula angustifolia and Eucalyptus globulus for the control of Varroa destructor in Apis mellifera: A randomised field study

    Get PDF
    Varroa destructor is the most harmful and widespread parasite that spreads disease in bees. Eucalyptus spp essential oils (EOs), has been shown to be effective against V. destructor. Additionally, Lavender spp EOs treatment, resulted in mite mortality rates of 95% to 97% of V. destructor. During the treatments, 20 mL of each oil or the placebo was distributed on two sheets of papier-mâché located on the frames of the brood chamber inside each hive. The miticidal effects of Lavandula angustifolia and Eucalyptus globulus EOs were analysed. Parasitic load and mite fall were evaluated under field conditions. The mean infestation rate obtained from each of three treatment groups at the beginning of the study was less than 3.6%. Then, the infestation rate increased gradually in each group until day 36. The infestation rates in the groups treated with L. angustifolia and E. globulus EOs were lower than those in the control by more than two percentage points and never exceeded 10%; the differences between the control group and the L. angustifolia group were statistically significant (p <0.05). Both EO treatments were applied in four doses, which produced a prolonged effect that lowered the rates of parasite birth and reinfestation. The L. angustifolia EO was effective; in that treatment, parasitic loads were maintained at levels lower than those in the control group starting at the second treatment dose due to the reproductive cycles of both species

    Bestimmungsgründe für die Wahl von ingenieur- und naturwissenschaftlichen Studiengängen: Ausgewählte Ergebnisse einer Schwerpunktstudie im Rahmen der Berichterstattung zur technologischen Leistungsfähigkeit Deutschlands

    Full text link
    Diese ZEW-Dokumentation enthält einen Überblick über zentrale Ergebnisse der Studie „Bestimmungsgründe für die Wahl von ingenieur- und naturwissenschaftlichen Studiengängen“, die als Schwerpunktstudie im Rahmen der Berichterstattung zur technologischen Leistungsfähigkeit Deutschlands von HIS und ZEW erarbeitet wurde

    Cenozoic Uplift of south Western Australia as constrained by river profiles

    Get PDF
    The relative tectonic quiescence of the Australian continent during the Cenozoic makes it an excellent natural laboratory to study recent large-scale variations in surface topography, and processes that influence changes in its elevation. Embedded within this topography is a fluvial network that is sensitive to variations in horizontal and vertical motions. The notion that a river acts as a 'tape recorder' for vertical perturbations suggests that changes in spatial and temporal characteristics of surface uplift can be deduced through the analysis of longitudinal river profiles. We analyse 20 longitudinal river profiles around the Australian continent. Concave upward profiles in northeast Australia indicate an absence of recent surface uplift. In contrast, the major knickzones within longitudinal profiles of rivers in southwest Australia suggest recent surface uplift. Given the lack of recent large-scale tectonic activity in that region, this uplift requires an explanation. Applying an inverse algorithm to river profiles of south Western Australia reveals that this surface uplift started in the Eocene and culminated in the mid-late Neogene. The surface uplift rates deduced from this river profile analysis generally agree with independent geological observations including preserved shallow-marine sediment outcrops across the Eucla Basin and south Western Australia. We show that the interplay between global sea level and long-wavelength dynamic topography associated with south Western Australia's plate motion path over the remnants of an ancient Pacific slab is a plausible mechanism driving this surface uplift.Comment: 33 pages including 7 figures. Published in Tectonophysics, please see final manuscript ther

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    Modeling Lithospheric Thickness Along the Conjugate South Atlantic Passive Margins Implies Asymmetric Rift Initiation

    Get PDF
    The lithospheric architecture of passive margins is crucial for understanding the tectonic processes that caused the breakup of Gondwana. We highlight the evolution of the South Atlantic passive margins by a simple thermal lithosphere-asthenosphere boundary (LAB) model based on onset and cessation of rifting, crustal thickness, and stretching factors. We simulate lithospheric thinning and select the LAB as the T = 1,330°C isotherm, which is calculated by 1D advection and diffusion. Stretching factors and margin geometry are adjusted to state-of-the-art data sets, giving a thermal LAB model that is especially designed for the continental margins of the South Atlantic. Our LAB model shows distinct variations along the passive margins that are not imaged by global LAB models, indicating different rifting mechanisms. For example, we model up to 200 km deep lithosphere in the South American Santos Basin and shallow lithosphere less than 60 km in the Namibe Basin offshore Africa. These two conjugate basins reflect a strong asymmetry in LAB depth that resembles variations in margin width. In a Gondwana reconstruction, we discuss these patterns together with seismic velocity perturbations for the Central and Austral Segments of the margins. The shallow lithosphere in the Namibe Basin correlates with signatures of the Angola Dome, attributed to epeirogenic uplift in the Neogene, suggesting an additional component of post-breakup lithospheric thinning
    corecore