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Cenozoic uplift of south Western Australia as constrained by river profiles

Abstract
The relative tectonic quiescence of the Australian continent during the Cenozoic makes it an excellent natural
laboratory to study recent large-scale variations in surface topography, and processes that influence changes in
its elevation. Embedded within this topography is a fluvial network that is sensitive to variations in horizontal
and vertical motions. The notion that a river acts as a 'tape recorder' for vertical perturbations suggests that
changes in spatial and temporal characteristics of surface uplift can be deduced through the analysis of
longitudinal river profiles. We analyse 20 longitudinal river profiles around the Australian continent. Concave
upward profiles in northeast Australia indicate an absence of recent surface uplift. In contrast, the major
knickzones within longitudinal profiles of rivers in southwest Australia suggest recent surface uplift. Given the
lack of recent large-scale tectonic activity in that region, this uplift requires an explanation. Applying an
inverse algorithm to river profiles of south Western Australia reveals that this surface uplift started in the
Eocene and culminated in the mid-late Neogene. The surface uplift rates deduced from this river profile
analysis generally agree with independent geological observations including preserved shallow-marine
sediment outcrops across the Eucla Basin and south Western Australia. We show that the interplay between
global sea level and long-wavelength dynamic topography associated with south Western Australia's plate
motion path over the remnants of an ancient Pacific slab is a plausible mechanism driving this surface uplift.
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Abstract	
	

The	relative	tectonic	quiescence	of	the	Australian	continent	during	the	Cenozoic	

makes	it	an	excellent	natural	laboratory	to	study	recent	large-scale	variations	in	

surface	 topography,	 and	 processes	 that	 influence	 changes	 in	 its	 elevation.	

Embedded	 within	 this	 topography	 is	 a	 fluvial	 network	 that	 is	 sensitive	 to	

variations	 in	 horizontal	 and	 vertical	motions.	 The	 notion	 that	 a	 river	 acts	 as	 a	

‘tape	 recorder’	 for	 vertical	 perturbations	 suggests	 that	 changes	 in	 spatial	 and	

temporal	characteristics	of	surface	uplift	can	be	deduced	through	the	analysis	of	

longitudinal	river	profiles.	We	analyse	20	longitudinal	river	profiles	around	the	

Australian	continent.	Concave	upward	profiles	in	northeast	Australia	indicate	an	

absence	 of	 recent	 surface	 uplift.	 In	 contrast,	 the	 major	 knickzones	 within	

longitudinal	 profiles	 of	 rivers	 in	 southwest	 Australia	 suggest	 recent	 surface	

uplift.	 Given	 the	 lack	 of	 recent	 large-scale	 tectonic	 activity	 in	 that	 region,	 this	

uplift	requires	an	explanation.	Applying	an	inverse	algorithm	to	river	profiles	of	

south	Western	Australia	reveals	that	this	surface	uplift	started	in	the	Eocene	and	

culminated	in	the	mid-late	Neogene.		The	surface	uplift	rates	deduced	from	this	

river	profile	analysis	generally	agree	with	 independent	geological	observations	

including	 preserved	 shallow-marine	 sediment	 outcrops	 across	 the	 Eucla	 Basin	

and	 south	Western	 Australia.	 	We	 show	 that	 the	 interplay	 between	 global	 sea	

level	 and	 long-wavelength	dynamic	 topography	associated	with	 south	Western	
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Australia’s	 plate	motion	 path	 over	 the	 remnants	 of	 an	 ancient	 Pacific	 slab	 is	 a	

plausible	mechanism	driving	this	surface	uplift.			

	

1.	Introduction		
	

The	 Australian	 continent	 displays	 remarkable	 intermediate	 (102	 km)	 to	 long-

wavelength	(103	km)	tectonic	stability	throughout	the	Cenozoic.	Since	its	break-

up	 from	 Antarctica	 along	 the	 Great	 Australian	 Bight	 and	 the	 opening	 of	 the	

Tasman	 Sea	 along	 the	 eastern	 margin	 in	 the	 Cretaceous	 (Veevers,	 1984),	

Australia	 has	 been	 tectonically	 relatively	 quiescent,	 with	 vertical	 surface	

displacements	 of	 the	 northward-moving	 continent	 largely	 controlled	 by	 long-

wavelength	 dynamic	 topography	 (Heine	 et	 al.,	 2010,	 Müller	 et	 al.,	 2000).	 Past	

Australian	 inundation	patterns,	deduced	 from	preserved	ancient	shallow-water	

sediments	 (Langford	 et	 al.,	 1995),	 generally	 differ	 from	global	 sea	 level	 trends	

and	have	commonly	been	attributed	to	the	effects	of	mantle	convection-induced	

dynamic	 topography	 (Czarnota	 et	 al.,	 2013,	Matthews	 et	 al.,	 2011,	Heine	 et	 al.,	

2010,	DiCaprio	et	al.,	2009,	Sandiford,	2007,	Gurnis	et	al.,	1998,	Veevers,	1984,	

Liu,	1979).				

While	subsidence	over	geological	 time	scales	 is	generally	well	preserved	 in	 the	

stratigraphic	 record,	 uplifting	 areas	 are	 subject	 to	 erosion	 and	 tend	 to	 have	 a	

poorer	 preservation	 potential	 (Flament	 et	 al.,	 2013,	 Olen	 et	 al.,	 2012).	 Here,	

tectonic	geomorphology	can	be	used	to	infer	rates	and	patterns	of	surface	uplift	

over	geological	timescales	from	information	contained	in	the	present-day	fluvial	

network	 (Whipple	 and	Tucker,	 1999).	 	 In	particular,	 longitudinal	 river	profiles	

may	 indicate	 whether	 surface	 uplift	 with	 respect	 to	 sea	 level	 (England	 and	

Molnar,	1990)	has	affected	a	catchment	area	(Snyder	et	al.,	2000).	The	analysis	of	

longitudinal	 river	 profiles	 is	 generally	 applied	 to	 tectonically	 active	 regions	

where	 surface	uplift	 rates	 can	be	 estimated	 independently	 and	 compared	with	

bedrock	erosion	rates	 (Schoenbohm	et	al.,	2004,	Snyder	et	al.,	2000).	Recently,	

Pritchard	et	al.	(2009)	and	Roberts	and	White	(2010)	suggested	that	the	present-
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day	geometry	of		longitudinal	river	profiles	contains	time-dependent	information	

pertaining	to	the	evolution	of	landscape	vertical	motions	over	larger	spatial	and	

temporal	 scales	 (i.e.,	 ~1–100+	 Myr,	 10–1000	 km;	 Roberts	 et	 al.,	 2012)	 in	

tectonically	 quiescent	 regions.	 In	 this	 method,	 time-dependent	 surface	 uplift	

rates	 are	 estimated	 by	 parameterizing	 the	 elevation	 of	 a	 river	 profile	 as	 a	

function	 of	 its	 length	 (Pritchard	 et	 al.,	 2009).	 Indeed,	 surface	 uplift	 results	 in	

rapid	changes	in	gradient	near	the	river	mouth	that,	over	time,	migrate	upstream	

as	 knickpoints	 (Whipple	 and	 Tucker,	 1999).	 Depending	 on	 retreat	 rate,	

knickpoints	 may	 be	 preserved	 in	 present-day	 longitudinal	 river	 profiles,	

providing	information	on	past	uplift	events.		

Here,	we	 analyse	20	 longitudinal	 river	 profiles	 across	 the	Australian	 continent	

(Fig.	1).	 While	 profiles	 from	 northern	 Australia	 do	 not	 show	 evidence	 for	

anomalous	 vertical	 motions,	 the	 shape	 of	 river	 profiles	 in	 south	 Western	

Australia	suggests	that	recent	surface	uplift	on	regional	scale	may	have	occurred.	

This	was	previously	recognised	by	Cope	(1975).	The	main	proposed	mechanisms	

for	 this	 regional-scale	 uplift	 in	 south	 Western	 Australia	 is	 long-wavelength	

dynamic	 topography	 and	 associated	 continent-wide	 tilting	 (Jakica	 et	 al.,	 2011,	

Quigley	et	al.,	2010,	Sandiford,	2007)	

	

We	 apply	 the	 method	 of	 Pritchard	 et	 al.	 (2009)	 to	 south	 Western	 Australian	

rivers	 to	 constrain	 the	 timing	 of	 surface	 uplift	 in	 that	 region.	We	 then	 discuss	

potential	driving	mechanisms	of	this	uplift,	integrating	geological	constraints	on	

seismicity,	marine	deposition,	tectonic	activity	and	the	northward	motion	of	the	

Australian	plate	since	the	Eocene.		

2.	Methodology		
	

We	 analyse	 20	 individual	 longitudinal	 river	 profiles	 grouped	 into	 five	

representative	 regions:	 south	 Western	 Australia,	 Pilbara,	 north	 Western	

Australia	and	Northern	Territories,	and	north	Queensland	(Fig.	1).	To	ensure	our	

study	focuses	on	the	effects	of	mantle-driven	processes	on	landscape	evolution,	

we	 have	 excluded	 the	 Southeast	 Highlands	 (Wellman,	 1974,	 Wellman,	 1979),	
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Flinders	 Ranges	 (Célérier	 et	 al.,	 2005)	 and	 Tasmania	 (Solomon	 et	 al.,	 1962)	

where	 this	 effect	 is	 considered	 eclipsed	 by	 shorter-wavelength	 tectonic	

processes.	Tectonically	induced	vertical	motions	are	generally	much	larger	than	

that	 produced	 by	 mantle	 convective	 processes,	 making	 the	 latter	 difficult	 to	

identify	(e.g.	Flament	et	al.,	2014).		

2.1	Extraction,	selection	and	geometry	of	longitudinal	river	profiles	

	

2.1.1.	Profile	extraction	

Each	river	profile	was	extracted	from	an	SRTM	3	arc	second	DEM	(Rabus	et	al.,	

2003).	The	DEM	was	segmented	and	reprojected	into	 its	respective	UTM	zones	

(50,	52	and	54)	ensuring	a	consistent	cell	size	of	90	m.	A	global	assessment	of	the	

SRTM	data	indicates	an	absolute	height	error	of	6.0	m,	and	relative	height	error	

of	 4.7	m	 for	 the	 Australian	 continent	 (Rodriguez	 et	 al.,	 2006).	 We	 followed	

standard	 protocols	 to	 extract	 river	 profiles	 using	 the	 Hydrology	 Tool	 in	 ESRI	

ArcGis	 10.0®.	We	 first	 removed	 all	 anomalous	 spikes	 and	 troughs,	 ensuring	 a	

hydrologically	 sound	 DEM.	 Next;	 we	 established	 a	 drainage	 network	 using	 a	

standard	 flow-routing	 algorithm	 that	 determines	 the	 direction	 of	 flow	 via	 the	

steepest	 slope	 from	 each	 cell.	 This	 was	 then	 used	 to	 calculate	 the	 flow	

accumulation	 based	 on	 the	 cumulative	 weight	 of	 all	 cells	 flowing	 into	 each	

downslope	 cell.	 All	 profiles	 exceed	 Strahler	 stream	 order	 >	4	 (Strahler,	 1957)	

which	defines	stream	size	based	on	a	hierarchy	of	tributaries.	All	rivers	drain	to	

the	coastline,	which	 is	assumed	to	be	the	 fixed	reference	 level	 in	 this	approach	

(Pritchard	et	al.,	2009).		

	

2.1.2.	Profile	selection	

Rivers	 draining	 internally	 are	 excluded	 as	 they	 may	 experience	 changes	 in	

reference	 levels	 at	 their	mouth,	which	 is	not	 located	at	 sea	 level.	 Furthermore,	

rivers	 draining	 expansive	 inland	 regions	 may	 cross	 different	 swells	 and	

depressions,	which	would	not	be	consistent	with	 the	assumption	 that	drainage	

planforms	 do	 not	 vary	 and	 that	 uplift	 varies	 solely	 as	 a	 function	 of	 time	

(Pritchard	 et	 al.,	 2009).	 Such	 rivers	were	 avoided	 because	 they	would	 require	

more	advanced	modelling,	such	as	a	general	2D	scheme	that	considers	variations	
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in	uplift	as	a	function	of	time	and	space	(Czarnota	et	al.,	2014,	Roberts	and	White,	

2010).	 We	 have	 also	 avoided,	 where	 possible,	 river	 profiles	 affected	 by	 dams	

(Kollmorgen	et	al.,	2007)	or	rock	uplift		resulting	in	river	captures	and	drainage	

reorganisations.	For	instance,	the	Swan/Avon	and	Moore	rivers	(profiles	a-b,	Fig.	

1)	 experienced	 significant	 drainage	 reorganisation	 as	 the	 result	 of	 Eocene	

upwarping	 that	 produced	 a	 marginal	 north-south	 swell	 in	 south	 Western	

Australia	 (Beard,	 1999,	 Beard,	 2003).	 Finally,	 the	 reactivation	 of	 faults	 may	

perturb	 or	 control	 river	 profiles,	 resulting	 in	 localised	 rather	 than	 broad	

knickzones	 (>	 100	 km;	 Whittaker,	 2012,	 Whittaker	 and	 Boulton,	 2012).	 The	

Murchison	River	 longitudinal	profile	(profile	7,	Fig.	1)	displays	such	a	 localised	

knickzone	 in	 close	 proximity	 to	 numerous	Neogene	 reactivated	 faults	 (Fig.	 1	 -	

inset,	 yellow	 faults;	 Clark	 et	 al.,	 2012),	 suggesting	 local	 tectonics	 may	 have	

influenced	 the	 evolution	 of	 this	 river	 that	 we	 therefore	 exclude	 from	 our	

analysis.	After	careful	analysis	of	published	data	(Clark	et	al.,	2012),	we	assume	

that	fault	reactivation	has	not	controlled	the	evolution	of	other	rivers.	Final	river	

profiles	were	compared	to	surface	hydrology	maps	(BoM,	2013)	to	ensure	their	

validity.			

	

2.1.3.	Profile	geometry	

The	 quality-controlled	 profiles	 were	 analysed	 to	 determine	 important	

morphological	 features	 that	 allude	 to	 the	 influences	 of	 landscape	 vertical	

motions.	 Using	 the	 geomorphology	 software	 Geomorph	 Tools	 (Whipple	 et	 al.,	

2007),	 we	 quantitatively	 identified	 all	 minor	 and	major	 knickzones	 through	 a	

combination	 of	 longitudinal	 plots	 (Fig.	 1)	 and	 linear	 regression	 of	 logarithmic	

slope	 versus	 drainage	 area	 plots	 (Snyder	 et	 al.,	 2003).	 	 A	 major	 knickzone	 is	

defined	as	a	change	in	profile	slope	downstream	from	the	inflexion	point	(Wobus	

et	al.,	2006,	Whipple	and	Tucker,	1999).	Out	of	 the	numerous	classifications	of	

knickzones	 and	 knickpoints	 (Foster	 and	 Kelsey,	 2012,	 Goldrick	 and	 Bishop,	

1995),	we	 focused	 on	 first	 order	 knickzones,	 neglecting	 knickpoints	 	 that	may	

have	 formed	 via	 spatial	 contrasts	 in	 lithology	 (VanLaningham	 et	 al.,	 2006)	 or	

fault-related	 vertical	 motions	 that	 introduce	 higher	 amplitude	 knickpoint	 or	

knickzone	geometries	within	longitudinal	river	profiles	(Whittaker,	2012).					
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Niemann	et	al.	 (2001)	showed	that	 in	 the	absence	of	 transport-limited	erosion,	

and	of	spatial	heterogeneities	 in	uplift	rate	or	erodibility,	 the	knickzone	retreat	

velocity	 should	 be	 regionally	 consistent	 such	 that	 knickzones	 resulting	 from	 a	

particular	vertical	perturbation	should	be	 found	at	 the	same	elevation	within	a	

basin.	 Therefore,	 knickzones	 occurring	 at	 the	 same	 elevation	 across	 an	 area	

suggest	 spatially	 uniform	uplift	 and	 a	 lack	 of	 transport-limited	 erosion	 (Berlin	

and	Anderson,	2007).		

	

2.2.	Parameterization	of	uplift	history	from	longitudinal	river	

profiles:		Governing	equations	

	

The	wavelength	of	uplift	associated	with	dynamic	topography	is	expected	to	be	

longer	than	the	total	length	of	any	of	the	selected	longitudinal	river	profiles.		We	

therefore	 implemented	a	simple	1D	 inverse	algorithm	to	determine	uplift	rates	

from	 the	 shape	 of	 longitudinal	 river	 profiles	 (Pritchard	 et	 al.,	 2009).	 In	 this	

approach,	 it	 is	assumed	 that	 the	elevation	along	a	river	profile	 is	 controlled	by	

uplift,	and	moderated	by	advective	erosion	(Pritchard	et	al.,	2009).	 It	 is	known	

that	the	evolution	of	elevation	along	a	longitudinal	river	profile,	over	time,	can	be	

written	as		
!"
!"
= 𝑈 𝑡 − vo	xm(− !"

!"
)! + 𝑘(𝑥) !

!!
!!!
																																																																																(1)	

	

where	U(t)	 is	 the	 uplift	 rate,	 vo	 is	 the	 reference	 knickpoint	 retreat	 velocity	 for	

m	=	0	and	n	=	1,	m	and	n	are	dimensionless	parameters	representing	the	distance	

and	 slope	 exponent,	 k	 is	 the	 diffusivity,	 and	 xm	 the	 discharge,	which	 increases	

downstream	 (Pritchard	 et	 al.,	 2009).	 Alternatively,	𝐴!	is	 sometimes	 used	 as	 a	

proxy	for	discharge,	where	A	is	the	upstream	drainage	area	at	any	position	x	(e.g.	

Whipple	and	Tucker,	1999).	A	previous	comparison	between	the	two	proxies	of	

discharge	showed	xm	to	be	adequate	for	Africa,	with	the	important	advantage	of	

easier	implementation	(Roberts	and	White,	2010).			

	Based	 on	 Eq.	 (1),	 neglecting	 the	 diffusive	 term,	 and	 given	 profile	 information	

z(x)	at	t	=	0,	it	can	be	shown	that	(Pritchard	et	al.,	2009)	

𝑈 (𝜏) = 𝑣!𝑥!(−
!"
!"
)!																																																																																																											(2)	
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where	𝜏	is	the	characteristic	time	period	of	uplift	that	can	be	expressed	as	

τ	=	 !!!!

(!!!)!!

!! !
!

!!!!

!
!

! !!!
!

(− !"
!"
)!!!																																																																																									(3)		

where	L	represents	the	total	length	of	a	longitudinal	river	profile.	

Eqs.	 (2)	 and	 (3)	 allow	 for	 the	 calculation	of	 an	uplift	 history	 from	 longitudinal	

river	 profiles.	 The	 resolution	 of	 the	 SRTM	 DEM	 (3	 arc	 seconds)	 gives	 a	

characteristic	time	step	length	of	~45	kyr	and	determines	the	discrete	spacing	of	

calculated	uplift	rate,	U	(τ).	Calculated	uplift	rate	histories	were	smoothed	using	

a	Gaussian	filter	over	an	8-Myr	time	window.	Cumulative	uplift	was	calculated	by	

integrating	the	uplift	rate	history	(Eq.	2)	of	each	river	over	geological	time.		

	

	

2.3.	Parameter	selection,	sensitivity	study	and	model	limitations		

	

Here	we	 justify	 our	 parameter	 selection	 and	discuss	 the	 limitations	 associated	

with	 model	 assumptions,	 including	 the	 effects	 of	 underlying	 lithology	 and	

climate.		

	

2.3.1.	Parameter	selection	

	

Given	 the	 known	 difficulties	 accurately	 constraining	 the	 slope	 exponent	 n	 in	

Eq.	1-3	 (Whipple	and	Tucker,	1999),	we	 followed	Roberts	and	White	 (2010)	 in	

assuming	 n	 =	 1.	 This	 simplifies	 the	 problem	 as	 the	 advective	 term	 becomes	

linear,	 and	 calculated	 uplift	 rate	 histories	 then	 scale	 with	 vo	 (Eq.	 2).	 In	 this	

simplified	 approach	 the	 advective	 velocity	 represents	 a	 decrease	 in	 the	

knickzone	velocity	as	 it	propagates	 further	upstream.	Previous	efforts	 linking	a	

decrease	 in	 upstream	 drainage	 area,	 as	 a	 river	 approaches	 its	 source,	 with	 a	

decrease	in	knickzone	velocities	(Crosby	and	Whipple,	2006),	suggest	using	n	=	1	

is	reasonable.	Increasing	n	to	1.05	would	push	U(τ)	back	in	time	by	~2-3	Myr.	If	

n	>	1.05,	multiple	values	of	U(τ)	may	occur	at	a	given	time	and	Eqs.	(2)	and	(3)	

would	no	longer	apply	(Pritchard	et	al.,	2009).		
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Uplift	rates	and	characteristic	uplift	period	depend	on	the	distance	exponent	m	

and	knickzone	 retreat	 rate	vo	 (Eqs.	2	and	3).	We	calibrated	m	 and	vo	 using	 the	

deposition	age	(~33.5-36.5	Ma)	and	present-day	elevation	range	(100-250	m)	of	

the	 Upper	 Eocene	 shallow-marine	 deposits	 of	 the	 Pallinup	 and	 Princess	 Royal	

Spongolite	Formation	(Gammon	et	al.,	2000).		This	geological	constraint	implies	

that	the	cumulative	uplift	for	the	Young,	Phillips,	and	Gardiner	rivers	should	be	

between	 100	 and	 250	m	 since	 ~36.5-33.5	Ma	 (white	 box	 in	 Fig.	 5A).	

Systematically	 varying	m	 and	 vo	within	 the	 range	 of	 published	 estimates,	 we	

selected	m	=	0.5	and	vo	=	5	m(1-m)	Myr-1	(Fig.	5A).											

	

A	variation	 in	the	position	of	 the	coastline	affects	 the	total	 length	(L)	of	a	river	

profile	 (Pritchard	 et	 al.,	 2009).	 Coastline	 fluctuations	 of	 ±45	 km	 change	 the	

calculated	 uplift	 rate	 history	 by	 ±1.5	Myr.	 Paleogeographic	 data	 indicates	 that	

the	 coastline	 position	 changed	 by	~50–70	km	 around	 south	Western	Australia	

since	the	Eocene	(Langford	et	al.,	1995),	suggesting	a	temporal	error	of	~±2	Myr.	

Similarly,	a	linear	vertical	relative	height	error	of	<	10	m	(Rodriguez	et	al.,	2006)	

in	the	SRTM	3	arc	second	DEM	results	in	an	approximate	uplift	error	of	less	than	

1	m	Myr-1	in	calculated	uplift	rate	histories.		

	

2.3.2.	Sensitivity	study	

	

A	 sensitivity	analysis	of	 the	distance	exponent	m	and	knickzone	 retreat	 rate	vo	

(Eqs.	 2	 and	 3)	was	 conducted	 to	 determine	 variations	 in	 calculated	 uplift	 rate	

histories,	 given	 different	 combinations	 of	 parameters.	 These	 were	 allowed	 to	

vary	within	 the	 range	 of	 published	 estimates,	 for	 the	 example	 of	 the	 Gardiner	

River,	 to	 investigate	 model	 sensitivity	 to	 parameter	 selection	 (Fig.	2).	 The	

calculated	uplift	rate	increases	with	vo	and	m,	as	expected	(Fig.	2A),	whereas	the	

characteristic	 uplift	 period	 decreases	with	 increasing	 vo	 and	m	(Fig.	2B).	 	 Both	

the	uplift	rate	and	the	characteristic	uplift	period	vary	by	one	order	of	magnitude	

for	 combinations	 of	 m	 and	 vo	 (Fig.	2).	 Such	 variability	 is	 comparable	 to	 the	

variability	 in	 estimating	 exhumation	 rates,	 defined	 as	 the	 difference	 between	

surface	 and	 rock	 uplift	 (England	 and	 Molnar,	 1990),	 derived	 from	

thermochronology	 (Kohn	 et	 al.,	 2002).	 This	 significant	 variability	 across	
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reasonable	combinations	of	m	and	vo	confirms	that	 these	parameters	should	be	

carefully	 selected	 based	 on	 independent	 geological	 data	 or	 previous	 studies	

(Roberts	and	White,	2010).			

	

2.3.3.	Potential	limitations:	Lithology	and	Climate		

	

The	 absence	 of	 correlation	 between	major	 knickzone	 locations	 and	 changes	 in	

underlying	lithology	(Fig.	3)	—	with	the	possible	exception	of	the	Phillips	River	

(Fig.	 3B)	 —	 suggests	 that	 these	 knickzones	 did	 not	 form	 because	 of	 spatial	

contrasts	in	erodibility	(Miller	et	al.,	2012)	and	that	lithology	has	little	effect	on	

the	 shape	 of	 these	 longitudinal	 river	 profiles	 (Fig.	3).	 The	 cumulative	 uplift	

predicted	 for	 the	Phillips	River	exceeds	 the	maximum	present-day	elevation	of	

the	Eocene	Pallinup	and	Princess	Royal	Spongolite	Formations	(Fig.	5A),	further	

suggesting	 that	 the	 underlying	 lithology	may	 have	 influenced	 the	 evolution	 of	

this	particular	river	profile.		

	

Knickpoint	retreat	rates	also	depend	on	climate,	which	is	 implicitly	assumed	to	

be	constant	in	the	method	described	above.	The	long-standing	debate	concerning	

the	relative	contributions	of	tectonics	and	climate	on	river	profiles	illustrates	the	

difficulty	 associated	 with	 deconvolving	 these	 complex	 and	 non-linear	

interactions	 (Raymo	 and	 Ruddiman,	 1992,	 Hren	 et	 al.,	 2007).	 Quantifying	 the	

climatic	controls	on	topography	still	eludes	scientists	and	current	efforts	mainly	

focus	 in	 regions	of	high	precipitation	rates	 (Stark	et	al.,	2010),	or	 consisting	of	

mountainous	terrain	with	steep	drainage	gradients	(Ferrier	et	al.,	2013,	Burbank	

et	 al.,	 2003).	 D'Arcy	 and	 Whittaker	 (2013)	 suggested	 that	 precipitation	 rates	

control	the	steepening	of	river	channels	in	response	to	tectonic	uplift.	Steep	river	

channels	 downstream	 of	 knickzones	 only	 occur	 for	 the	 Phillips	 (Fig.	 3B)	 and	

Collie	 (Fig.	 3F)	 rivers,	 suggesting	 that	 climate	 does	 not	 control	 the	 channel	

steepness	of	south	Western	Australian	rivers	(D'Arcy	and	Whittaker,	2013).	We	

also	 note	 the	 very	 similar	 profile	 geometry	 between	 the	 Swan,	 Moore,	 and	

Murchison	 rivers	 (Fig.	 1),	 which	 were	 excluded	 from	 this	 analysis,	 and	 other	

river	 profiles	 in	 south	 Western	 Australia.	 However,	 the	 geometry	 of	 the	

Murchison	 and	 Gascoyne	 river	 profiles	 (Fig.	 1)	 are	 very	 different.	 Given	 the	
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proximity	 of	 these	 two	 rivers	 (~	300	km)	 and	 the	 absence	 of	 significant	 relief	

between	them,	we	argue	that	sharp	contrasts	 in	climate	are	unlikely	 to	explain	

the	 difference	 in	 the	 shape	 of	 these	 rivers.	 An	 increase	 in	 mean	 annual	

precipitation	 in	 a	 tectonically	 stable	 region	may	 lead	 to	 steeply	 concave	 river	

profiles	 (Zaprowski	et	al.,	2005).	 	However,	northwest	Australian	river	profiles	

are	smooth,	nearly	flat	(e.g.	Gascoyne,	Ashburton,	DeGray;	Fig.	1),	when	visually	

compared	 with	 northeast	 Australian	 river	 profiles	 (e.g.,	 Flinders,	 Staaten,	

Leichhardt;	 Fig.	1),	 again	 suggesting	 a	 lack	 of	 climatic	 control	 across	 the	

tectonically	stable	region.		Finally,	Wobus	et	al.	(2010)	argued	that	climatic	shifts	

could	cause	knickpoints	to	incise	downstream	and	generate	decreasing	gradients	

downstream	 of	 the	 knickzone,	 which	 is	 not	 observed	 in	 the	 longitudinal	 river	

profiles	of	south	Western	Australia.		

	

The	 Oligocene–Neogene	 marked	 a	 transition	 from	 the	 Cretaceous–Eocene	

paleoclimate	of	Australia	 (Quilty,	1994)	 towards	 its	present-day	 climate.	Along	

the	 southern	 margin,	 the	 Cretaceous–Eocene	 represented	 a	 period	 of	 climatic	

fluctuations	 influenced	 by	 Australia’s	 proximity	 to	 Antarctica	 (Quilty,	 1994).	

Changes	 to	 ocean	 currents	 as	 a	 result	 of	 Australia’s	 migration	 away	 from	

Antarctica	 (Whittaker	 et	 al.,	 2007),	 coupled	 with	 the	 opening	 of	 the	 Drake	

passage	 between	 South	 America	 and	 Antarctica	 (Lawver	 and	 Gahagan,	 1998)	

resulted	 in	 the	 establishment	 of	 the	 Circum-Antarctic	 current	 (Lawver	 and	

Gahagan,	 2003)	 that	 increased	 coastal	 precipitation	 and	 runoff	 (Quilty,	 1994).	

The	 present-day	 precipitation	 rates	 of	 500-600	mm	yr-1	 (BoM,	 2013)	 in	 south	

Western	Australia	are	one	order	of	magnitude	lower	than	required	for	climate	to	

be	 the	 primary	 control	 on	 the	 evolution	 of	 longitudinal	 river	 profiles	 (≈	

50	mm/day;	 Stark	 et	 al.,	 2010).	 Recent	 modelling	 determined	 that	 monsoon	

precipitations	rates	in	north	and	western	Australia	were	even	lower	during	the	

Early	to	Middle	Miocene	(~200	mm	yr-1)	than	at	present	(Herold	et	al.,	2011).	A	

change	in	climatic	regimes	thus	appears	unlikely	to	have	controlled	the	evolution	

of	south	Western	Australian	rivers.				
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3.	Results		

3.1.	Geomorphologic	characteristics	of	Australian	longitudinal	river	

profiles	

	

Concave	longitudinal	river	profiles	are	usually	interpreted	to	be	in	steady	state,	

unaffected	 by	 external	 forces	 such	 as	 recent	 changes	 in	 erosion,	 uplift,	 or	 in	

climate	(Whipple	and	Tucker,	1999).	Examples	from	our	study	are	the	rivers	in	

the	north	Queensland	region,	which	appear	to	have	developed	in	the	absence	of	

significant	 changes	 in	 these	 external	 controls	 (Fig.	1).	 In	 contrast,	 longitudinal	

river	profiles	displaying	convex	geometries,	suggest	disequilibrium	as	a	result	of	

the	influence	of	one	or	more	external	forces	(Whipple	and	Tucker,	1999).	This	is	

the	 case	 for	 river	 profiles	 from	 south	Western	 Australia	 (Fig.	1)	 that	 all	 show	

convex	 shapes	 and	 knickzones	 at	 varying	 distances	 upstream	 from	 the	 river	

mouth.	 Interestingly,	prominent	south	Western	Australian	knickzones	all	occur	

at	a	similar	altitude	(~200	±20	m),	suggesting	that	a	uniform	surface	uplift	event	

may	have	affected	those	longitudinal	river	profiles	contemporaneously,	and	that	

knickzone	migration	was	dominated	by	advective	erosion	(Berlin	and	Anderson,	

2007,	Niemann	et	al.,	2001).		

	

Prominent	knickzones	can	be	identified	in	river	profiles	occurring	as	far	north	as	

the	 Murchison	 River	 (Profile	 7,	 Fig.	1),	 then	 progressively	 change	 to	 smooth	

concave	upward	geometries	in	the	Pilbara	region	(Fig.	1).	This	concave	upward	

profile	geometry	becomes	more	pronounced	towards	the	Kimberley	region	and	

North	 Queensland.	 Here,	 longitudinal	 river	 profiles	 consistently	 have	 distinct	

concave	upward	profiles,	 suggesting	 they	may	be	 in	 equilibrium	 (Whipple	 and	

Tucker,	 1999).	 Several	 studies	 have	 proposed	 that	 northern	 Australia	 is	

currently	undergoing	a	dynamic	drawdown,	caused	by	Australia	overriding	slabs	

subducting	under	South-East	Asia	and	Melanesia	(Heine	et	al.,	2010,	DiCaprio	et	

al.,	 2010,	 Müller	 et	 al.,	 2000).	 	 However,	 such	 dynamic	 subsidence	 cannot	 be	

quantified	by	the	analysis	of	 longitudinal	river	profiles	 that	may	only	constrain	

uplift	(Pritchard	et	al.,	2009).	Finally,	the	measured	concavities	(Ɵ;	Whipple	et	al.,	

2007)	of	relict	streams,	i.e.	the	sections	of	a	river	profile	upstream	of	a	knickzone	
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or	 knickpoint,	 unaffected	 by	 its	migration	 (Schoenbohm	 et	 al.,	 2004)	 in	 south	

Western	 Australia	 (Ɵ	 =	 0.38	 ±0.3119)	 match	 the	 full-profile	 concavities	

measured	 in	 north	 Queensland	 (Ɵ	=	0.36	±0.1225),	 suggesting	 that	 south	

Western	Australia	 rivers	might	have	once	 shared	a	 similar	profile	 geometry	 to	

the	present-day	river	profiles	of	north	Queensland.		

	

3.2.	Predicted	uplift	histories	deduced	from	longitudinal	river	

profiles	

	

3.2.1.	Predicted	uplift	rate	history	

	
Based	on	the	analysis	of	considered	river	profiles	(previous	section	and	Fig.	1),	

we	 limit	 the	 application	 of	 the	 inverse	 algorithm	 of	 Pritchard	 et	 al.	 (2009)	 to	

south	Western	 Australian	 rivers	 that	 consistently	 display	 convex	 profiles	with	

pronounced	knickzones.	We	excluded	the	Swan/Avon	and	Moore	rivers	(profiles	

a-b,	Fig.	1)	from	this	analysis	because	a	Late	Eocene	drainage	reversal	has	been	

reported	(Beard,	1999)	for	these	rivers.	

	

Calculated	uplift	rates	are	displayed	from	100	Ma	to	present	day	(Fig.	4)	because	

there	is	no	significant	change	in	cumulative	uplift	prior	this	time	(Fig.	5A).		

The	Phillips,	Collie,	and	Franklin	Rivers	show	uplift	rates	ranging	between	0	and	

3	m	Myr-1	until	~40	Ma.	The	Young,	Gardiner,	and	Blackwood	Rivers	show	minor	

undulations	 in	 uplift	 rates	 until	 ~45	 Ma,	 not	 exceeding	 peak	 rates	 of	 3	 to	

5	m	Myr-1.	

The	 predicted	 uplift	 rate	 for	 the	 Young	 River	(Fig.	4A)	 first	 increases	 from	

~45	Ma,	 recording	 a	 small	 peak	 at	 ~40	Ma	 (~6	 m	 Myr-1).	 Uplift	 rates	 then	

plateau	 off	 at	~5	m	Myr-1,	 and	 increase	 again	 from	15	Ma	 onwards,	 reaching	 a	

maximum	of	11	m	Myr-1	 at	~10	Ma.	Uplift	 rates	decline	 sharply	 to	present	day	

(~3	m	Myr-1).		

The	Phillips	River	(Fig.	4B)	records	a	sharp	increase	from	40	Ma	until	it	reaches	a	

peak	rate	of	21	m	Myr-1	at	~17	Ma,	which	is	the	maximum	predicted	uplift	rate	
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for	any	of	the	selected	river	profiles.	As	with	the	Young	River,	uplift	rates	decline	

immediately	after	17	Ma	to	present	day	values	of		~6	m	Myr-1.		

The	 Gardiner	 River	 (Fig.	4C)	 indicates	 an	 increase	 of	 uplift	 rates	 starting	 at	

~45	Ma,	 reaching	peak	rates	at	~32	Ma	(6	m	Myr-1)	and	at	~12	Ma	(9	m	Myr-1)	

with	a	period	of	~10	Myr	of	lower	uplift	rates	separating	the	two	maxima.	Rates	

subsequently	decline	to	present	day	(~3	m	Myr-1).		

The	predicted	Franklin	River	uplift	history	(Fig.	4D)	shows	a	slow	increase	from	

~40	 Ma,	 followed	 by	 a	 sharp	 increase	 from	 22	Ma	 onwards	 with	 peak	 rates	

reached	at	~18	Ma	(10	m	Myr-1)	and	~6	Ma	(11	m	Myr-1).	Given	their	temporal	

proximity	 and	 the	 negligible	 decline	 in	 uplift	 rates	 between	 them,	 these	 peaks	

represent	a	singular	uplift	event	commencing	at	~22	Ma.	Rates	 then	decline	 to	

present	day	(~3	m	Myr-1).		

Along	the	Blackwood	river	(Fig.	4E),	the	model	shows	an	increase	in	uplift	rates	

from	 ~47	 Ma	 onwards,	 peaking	 at	 ~45	Ma	 (~7	m	Myr-1).	 This	 rate	 remains	

relatively	 constant	 until	 ~32	Ma	where	 it	 decreases	 to	 relatively	 low	 rates	 of	

~3	m	Myr-1	until	present	day.		

The	predicted	uplift	history	of	 the	Collie	River	(Fig.	4F)	 is	similar	 to	 that	of	 the	

Phillips	 River	 with	 a	 sharp	 increase	 at	 ~25	Ma	 reaching	 ~20	m	Myr-1	 around	

16	Ma.	 The	 rate	 then	 declines	 sharply	 to	 ~1	 m	 Myr-1	 at	 5	Ma	 and	 remains	

constant	to	present	day.		

	

In	summary,	predicted	uplift	histories	for	the	six	river	profiles	in	south	Western	

Australia	 show	 a	 significant	 increase	 in	 uplift	 rates	 from	~45-40	Ma	 onwards,	

and	 a	 decrease	 in	 rate	 in	 the	 last	 5	Ma	 (Fig.	 4).	 There	 are	 variations	 between	

rivers	in	the	timing	and	magnitude	of	recorded	maximum	uplift	events	between	

40	 and	 5	Ma.	 The	 Young	 and	 Gardiner	 (12	Ma	 peak)	 rivers	 record	 maximum	

uplift	rates	of	10	m	Myrs-1	at	around	10	Ma.	The	Phillips,	and	Collie	rivers	display	

the	largest	predicted	spike	in	uplift	rates	of	all	profiles	at	~16	Ma.	The	maximum	

uplift	rates	of	the	Blackwood	River	are	consistent	with	the	early	rate	increases	of	

the	Young,	Phillips,	and	Gardiner	Rivers	at	~	40	Ma.		

Together,	these	results	suggest	that	south	Western	Australia	Rivers	recorded	an	

uplift	 event	 commencing	 in	 the	 mid-late	 Eocene	 with	 maximum	 uplift	 rates	

recorded	in	the	Mid	Neogene.	
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3.2.2.	Predicted	cumulative	uplift	

	

The	cumulative	uplift	history	is	the	total	uplift	over	the	predicted	recording	time	

of	a	longitudinal	river	profile	(Fig.	5A)	that	depends	on	river	length.	We	compute	

the	 evolution	 of	 total	 uplift	 normalised	 to	 present-day	 for	 all	 rivers	 (Fig.	 5A).		

This	reveals	that	south	Western	Australian	rivers	have	recorded	~400	m	of	uplift	

over	 their	 history,	 with	 half	 of	 this	 uplift	 occurring	 since	 the	mid-late	 Eocene	

(~200	m;	45–40	Ma).		The	initially	low	predicted	uplift	rates	result	in	an	increase	

of	 cumulative	 uplift	 of	 ~<	 100	m	 for	 the	 first	 ~160	 Myr	 until	 ~40	Ma.	 An	

exception	 is	 the	 Blackwood	 River	 (Fig.	5A,	 yellow	 line)	 that	 shows	 a	 slight	

acceleration	 in	 cumulative	uplift	 from	~80	Ma.	All	 other	profiles	 show	a	 sharp	

acceleration	 in	 cumulative	 uplift	 starting	 between	 50	 and	 40	Ma,	 as	 expected	

from	 the	 predicted	 increase	 in	 uplift	 rates	 at	 that	 time	 (Fig.	5A).	 Individual	

cumulative	histories	differ	in	their	gradient	from	this	time	onward,	and	for	some	

rivers	a	second	acceleration	in	cumulative	uplift	is	recorded	(e.g.	Franklin	River	

at	~20	Ma,	Fig.	6a,	purple).	A	later	deceleration	in	cumulative	uplift,	is	observed	

across	all	river	profiles	at	~10-5	Ma.		

	

4.	Discussion		

4.1.	Predicted	uplift	in	the	context	of	the	geological	record	of	

southern	Australia	

	

The	model	cumulative	uplift	was	calibrated	to	match	the	present-day	elevation	

of	the	Upper	Eocene	shallow-marine	deposits	of	the	Pallinup	and	Princess	Royal	

Spongolite	Formation	 (Gammon	et	al.,	2000).	 In	addition,	 the	preservation	of	a	

Late	 Eocene	 paleoshoreline	 at	 an	 elevation	 of	 ~300	m	 across	 the	 Eucla	 Basin,	

east	 of	 south	 Western	 Australia	 (Fig.	 6A	 -	 black	 outline;	 Sandiford,	 2007),	

suggests	 Late	 Eocene	 surface	 uplift	 further	 along	 the	 southern	 margin	 of	

Australia.	 This	 paleoshoreline	 includes	 inundated	 valleys,	 offshore	 barrier	

systems,	 and	 marginal	 lagoons	 all	 dating	 back	 to	 the	 mid-late	 Eocene	 (~41–

39	Ma),	 indicating	~300	m	of	surface	uplift	across	the	Eucla	Basin	(~41-39	Ma;	
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Sandiford,	 2007).	 Cope	 (1975)	 proposed	 parts	 of	 south	Western	Australia	 had	

undergone	a	primary	phase	of	surface	uplift	during	the	Oligocene	(~175	m)	and	

a	secondary	event	at	the	Miocene-Pliocene	boundary,	by	measuring	present-day	

elevations	of	late	Eocene-Oligocene	shallow-marine	sediments.	Previous	to	this,	

Lowry	 (1970),	 also	measured	 present-day	 elevations	 of	 Eocene-Oligocene	 and	

Mid-Miocene	 shallow-marine	 sediments,	 suggesting	 two	 main	 phases	 of	

epeirogenic	surface	uplift	 in	the	region	in	the	Oligocene	and	mid-Miocene.	 	The	

preservation	of	mid-Miocene	marine	limestone	within	the	Eucla	Basin	(Nullarbor	

Limestone;	 Li	 et	 al.,	 2003)	 	 at	 elevations	 of	 180	 –	 280	m	 indicates	 subsequent	

surface	 uplift	 of	 that	 region	 during	 the	 Neogene	 (Fig.	 6A;	 Sandiford,	 2007).	

Further	 west,	 the	 preservation	 of	 the	 mid-Miocene	 Plumbridge	 limestone,	 a	

facies	 equivalent	 of	 the	 Nullarbor	 limestone	 (Lowry,	 1970),	 	 crops	 out	 at	

elevations	 of	 ~50–100	 m,	 indicating	 a	 similar	 surface	 uplift	 event	 during	 the	

Neogene	influenced	south	Western	Australia	(Fig.	6).		

The	 progressively	 increasing	 uplift	 rates	 from	 ~45–40	Ma	 derived	 from	

longitudinal	profiles	of	south	Western	Australian	rivers	 is	generally	compatible	

with	 present-day	 elevated	 outcrops	 of	 shallow-marine	 sediments	 across	 the	

southern	 margin	 of	 the	 Australian	 continent.	 Predicted	 cumulative	 uplift	 is	 in	

agreement	 with	 independent	 estimations	 of	 surface	 uplift	 from	 elevated	

outcrops	of	Oligocene	(~175	m		±	15	m,	34-23	Ma;	Cope,	1975)	and	mid-Miocene	

(~75	±	25	m,	17-13	Ma;	Lowry,	1970)	shallow-water	sediments	(Fig.	5A;	cyan).	

In	 this	 instance,	 the	 error	 bars	 shown	 for	 the	 Oligocene	 and	 mid-Miocene	

locations	 (Fig.	 5A)	 do	 not	 account	 for	 any	 error	 in	 measurement,	 rather	 the	

variations	 in	elevation	of	 the	respective	outcrops.	Late	Eocene-Oligocene	strata	

were	deposited	between	~34	and	23	Ma,	while	the	mid-Miocene	limestone	was	

deposited	at	~15		±	2	Ma	(Sandiford,	2007).	Cumulative	uplift	histories	are	also	

compatible	 with	 the	 preservation	 of	 shallow-marine	 sediments	 along	 the	

onshore	margin	of	the	Bremer	Basin	and	preserved	paleoshorelines	in	the	Eucla	

Basin.	The	maximum	predicted	uplift	phase	occurs	in	the	mid-	to	late-	Neogene,	

consistent	with	the	preservation	of	mid-Neogene	(~15	Ma)	marine	limestone	to	

the	East	across	the	Eucla	Basin,	and	in	parts	of	south	Western	Australia	(Fig.	6A).	

The	protracted	initial	phase	of	uplift	predicted	by	the	inversion	of	river	profiles	
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cannot	be	validated	 in	 the	absence	of	 geological	 constraints	on	 the	pre-Eocene	

history	of	regional	surface	uplift.	

	

The	thin	green	curves	in	Fig.	4	represent	smoothed	long-term	exhumation	rates	

since	 100	 Ma	 for	 south	 Western	 Australia,	 derived	 from	 the	 analysis	 and	

modelling	 of	 apatite	 fission	 track	 on	 samples	 from	 ~120	 locations	 in	 south	

Western	 Australia,	 averaged	 over	 300	Myr	 (Kohn	 et	 al.,	 2002).	 Two	 distinct	

peaks	 in	exhumation	rates	occur	at	~35	Ma	(~12	m	Myr-1)	and	~25	Ma	(~8	m	

Myr-1).	 	 The	 first	 peak	 in	 exhumation	 rates	 (~35	Ma)	 occurs	 shortly	 after	 the	

initial	increase	in	uplift	rates	recorded	in	the	longitudinal	river	profiles	(~45–40	

Ma),	and	there	is	a	significant	difference	in	peak	magnitudes	(river	surface	uplift	

rates	~1–5	m	Myr-1	 and	 exhumation	 rates	~12	m	Myr-1).	 The	maximum	uplift	

rates	recorded	in	longitudinal	river	profiles	occur	later	in	geological	time	(Early	

–	Mid	Neogene)	than	the	maximum	exhumation	rates	(Late	Eocene	–	Oligocene).	

Although	 poorly	 constrained	 given	 the	 assumptions	 underlying	

thermochronology	 and	 river	 studies,	 this	 time	 lag	 suggests	 that	 fluvial	 erosion	

may	be	an	important	mechanism	of	exhumation.		Indeed,	given	the	use	of	a	very	

low	 advective	 coefficient	 (5	m(1-m)	 Myr-1,	 Fig.	5A)	 and	 therefore	 very	 slow	

propagation	of	knickzones,	a	delay	between	surface	uplift	recorded	by	rivers	and	

exhumation	rates	recorded	by	thermochronology	is	expected.		

	

4.2.	Mechanisms	driving	the	uplift	of	south	Western	Australia	

	

The	 evolution	 of	 topography	 results	 from	 multiple	 processes	 operating	 at	

different	 spatial	 and	 temporal	 scales,	 from	 low-amplitude	 (<2	km),	 long-

wavelength	(>700	km)	dynamic	 topography	(e.g.	Flament	et	al,	2013),	 to	 large-

amplitude	(<10	km),	short-wavelength	(<	500	km)	tectonic	topography	(Molnar	

and	England,	1990),	moderated	by	erosion	and	changes	in	eustatic	sea	level.	Our	

analysis	of	south	Western	Australian	longitudinal	river	profiles	reveals	~	200	m	

of	 surface	 uplift	 since	 ~45-40	 Ma	 over	 a	 spatial	 scale	 of	 at	 least	 500	 km	

extending	 from	 the	 Young	 River	 to	 the	 Collie	 River	 (Figs.	1	 and	 3).	 We	
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subsequently	 discuss	 processes	 operating	 at	 spatio-temporal	wavelengths	 that	

could	explain	this	surface	uplift.		

	

4.2.1.	Long-wavelength	dynamic	topography	

	

Continental-scale	 dynamic	 topography	 occurs	 at	 wavelengths	 (>	1000	km)	

compatible	 with	 the	 constrained	 surface	 uplift	 of	 south	 Western	 Australia	

(>	500	km)	and	has	been	previously	recognized	as	a	mechanism	of	surface	uplift	

for	 this	 region	 (Czarnota	 et	 al.,	 2013,	 Quigley	 et	 al.,	 2010).	 Based	 on	 the	

pronounced	latitudinal	asymmetry	of	Neogene	stratigraphy	(Fig.	6B)	and	of	the	

present-day	 Australian	 continental	 shelf,	 Sandiford	 (2007)	 estimated	 ~250–

300	m	of	continental–scale	dynamic	north-down	tilt	since	the	mid-Miocene,	at	a	

rate	 of	~15–20	m	Myr-1.	 The	 preservation	 of	 a	 relict,	 broad-scale	 (~1000	 km),	

southern	tilt	 in	the	drainage	basins	of	 the	Western	Plateau	(Beard	1998,	2000)	

further	points	to	long-wavelength	dynamic	topography.	It	suggests	that	prior	to	

Late	Eocene	surface	uplift,	the	fluvial	networks	draining	south	Western	Australia	

were	 influenced	 by	 a	 depression	 along	 the	 southern	 margin.	 This	 is	 further	

supported	 by	 observations	 detailing	 a	 late	 Paleogene	 episode	 of	 subsidence	 in	

the	 region,	 resulting	 in	 the	 deposition	 of	 the	Werrilup	 Formation,	 followed	 by	

Oligocene	surface	uplift	(Gammon	et	al.,	2000,	Cope,	1975,	Cockbain,	1968).					

To	 quantify	 the	 effect	 of	 mantle	 convection-induced	 dynamic	 topography	 on	

south	 Western	 Australian	 rivers,	 we	 analyse	 a	 geodynamic	 model	 backward	

advecting	seismic	tomography	(Heine	et	al.	2010),	shown	since	40	Ma	in	a	fixed	

Australian	 reference	 frame	 (Fig.	 7).	 	 The	 evolution	 of	 Australian	 dynamic	

topography	 is	 dominated	 by	 the	 migration	 of	 the	 plate	 over	 two	 dynamic	

topography	lows	associated	with	sinking	slabs.	The	southern	margin	of	Australia	

was	 first	 drawn	 down	 (from	 ~40	 Ma)	 by	 the	 large	 dynamic	 topography	 low	

associated	 with	 the	 sinking	 of	 the	 slab	 related	 to	 the	 subduction	 zone	 that	

separated	 Eastern	 Gondwanaland	 from	 the	 paleo-Pacific	 Ocean	 (Gurnis	 et	 al.,	

1998),	 then	uplifted	as	the	continent	migrated	northward	(Fig.	7F	–	7B).	 	From	

~	25	Ma,	 the	 northward	motion	 of	 Australia	 towards	 the	 dynamic	 topography	
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low	associated	with	Melanesian	slabs	(Müller	et	al.,	2000)	tilted	the	continent	to	

the	north	(Fig.	7C	–	7A).		

The	rate	of	change	of	dynamic	topography	predicted	by	this	model	(Fig.	4	-	thin	

grey	rate;	Heine	et	al.,	2010)	shows	a	phase	of	dynamic	surface	uplift	between	

~30	 and	 15	 Ma	 that	 is	 broadly	 compatible	 with	 a	 period	 of	 fast	 uplift	 rates	

recorded	by	 the	Phillips	(Fig.	4B),	Franklin	(Fig.	4D)	and	Collie	(Fig.	4F)	rivers.	

However,	 uplift	 rates	 from	 all	 longitudinal	 river	 profiles	 initiate	 between	 ~5–

10	Myr	 earlier	 than	 this	 dynamic	 surface	 uplift	 (Fig.	 4),	 and	 the	 change	 to	

dynamic	 subsidence	 from	 ~15	 Ma	 is	 at	 odds	 with	 the	 maximum	 uplift	 rates	

recorded	by	the	Young	(~10	Ma),	Phillips	(~18	Ma),	Gardiner	(~12	Ma),	Franklin	

(~7	Ma	and	~20	Ma),	and	Collie	(~15	Ma)	rivers.		Parameters	m	and	v0	could	be	

changed	 in	 the	 river	 inversion	 algorithm	 (Eqs.	 2-3)	 to	 fit	 the	 uplift	 history	

predicted	by	the	geodynamic	model,	but	the	revised	cumulative	uplift	would	no	

longer	 be	 compatible	 with	 geological	 constraints	 (section	 2.3.1	 and	 Fig.	 5A).			

This	 suggests	 that	 long-wavelength	 dynamic	 topography	 cannot	 explain	 the	

evolution	of	south	Western	Australian	rivers	if	global	sea	level	is	assumed	to	be	

constant.	

	

4.2.2.	Interplays	between	eustasy	and	dynamic	topography	

	

Long-wavelength	 dynamic	 topography	 has	 been	 proposed	 to	 offset,	 by	 a	 third,	

the	global	sea	level	fall	 imposed	by	changes	in	the	volume	of	ocean	basins	over	

the	 last	 100	Ma	 (Spasojevic	 and	Gurnis,	 2012).	However,	 the	 effect	 of	 dynamic	

topography	 on	 relative	 sea	 level	 varies	 from	 region	 to	 region	 (Spasojevic	 and	

Gurnis,	2012).	We	next	consider	fluctuations	in	eustatic	sea	level,	using	the	curve	

of	 Haq	 and	 Al-Qahtani	 (2005;	 Fig.	 7G),	 filtered	 for	 long-wavelengths	 (as	 it	

appeared	in	Muller	et	al.,	2008).	Interestingly,	global	sea	level	evolution	is	mostly	

synchronous	 with	 that	 of	 dynamic	 topography	 for	 south	 Western	 Australia	

(Fig.	7G).		In	geomorphology,	base	level	is	defined	as	the	elevation	below	which	a	

stream	cannot	incise	(Leopold	and	Bull,	1979).		However,	here	we	calculate	base	

level	as	the	difference	between	dynamic	topography	and	sea	level.	The	evolution	

of	base	level	is	consistent	with	that	of	cumulative	uplift,	since	uplift	between	~35	



	 19	

and	15	Ma	is	reflected	by	a	regression	(decrease	in	base	level	elevation,	Fig.	5A).		

In	addition,	transgressions	(increases	in	base	level	elevation)	between	~65	and	

55	 Ma	 and	 since	 ~5	 Ma	 (Fig.	 4)	 correspond	 to	 constant	 or	 deceleration	 in	

cumulative	uplift	which	confirms	that	the	method	used	herein	can	only	constrain	

uplift	 (Pritchard	 et	 al.,	 2009).	 	While	 the	 trends	 in	 cumulative	 uplift	 and	 base	

level	 are	 consistent,	 amplitudes	 of	 changes	 in	 base	 level	 are	 about	 four	times	

smaller	than	that	of	cumulative	uplift.			The	change	in	base	level	since	the	Eocene	

(~90	m)	 is	 only	 half	 the	 present-day	 elevation	 of	 knickzones	 (~200	m),	

suggesting	 that	 the	 amplitude	 of	 dynamic	 topography,	 generally	 poorly	

constrained	 (e.g.	 Flament	 et	 al.,	 2013),	 might	 be	 underestimated	 in	 the	

geodynamic	model	used	herein.		

Rates	of	base	level	change	(brown	curves	in	Fig.	4)	better	agree	with	uplift	rates	

constrained	 by	 river	 profiles	 than	 rates	 of	 dynamic	 topography	 change	 (grey	

curves	 in	 Fig.	 4).	 	 Indeed,	 regressions	 (positive	 rates	 of	 base	 level	 change)	 at	

~55	Ma,	~45	Ma,	~30	Ma,	 and	between	~20	and	5	Ma	 are	 in	 good	 agreement	

with	peaks	in	uplift	rate	at	~30	Ma	and	~12	Ma	(Gardiner	River,	Fig.	4C),	~45	Ma	

and	 ~30	 Ma	 (Blackwood	 River,	 Fig.	 4D)	 and	 consistent	 with	 maximum	 uplift	

rates	occurring	between	~20	and	5	Ma	for	all	rivers	except	the	Blackwood	River.			

Transgressions	 (negative	 rates	of	base	 level	 change)	 at	~60	Ma,	40	Ma,	25	Ma	

and	since	~5	Ma	are	consistent	with	decreasing	or	constant	uplift	rates	at	these	

times.	As	an	example,	uplift	rates	for	the	Phillips	River	plateau	off	between	~25	

and	20	Ma,	reflecting	the	transgression	during	this	period.	

The	above	analysis	 suggests	 that	 interplays	between	 long-wavelength	dynamic	

topography	and	eustasy	are	the	primary	mechanism	controlling	the	evolution	of	

south	Western	 Australian	 rivers.	 	 Nevertheless,	 this	 comparison	 is	 not	 perfect	

and	we	discuss	potential	secondary	mechanisms	below.	

	

4.2.3.	Possible	secondary	mechanisms	

	

Small	 discrepancies	 between	 the	 evolution	 of	 base	 level	 and	 uplift	 histories	

deduced	 from	 south	 Western	 Australian	 rivers,	 such	 as	 short-wavelength	
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oscillations	since	20	Ma	 in	uplift	 rates	predicted	 for	 the	Franklin	river,	 suggest	

that	secondary	mechanisms	may	be	at	play.		

Changes	 in	 climate,	 although	 not	 controlling	 the	 evolution	 of	 south	 Western	

Australian	rivers	(see	section	2.3.2),	may	play	a	secondary	role	as	suggested	by	

steep	 gradients	 downstream	 of	 knickzones	 for	 the	 Phillips	 and	 Collie	 rivers.		

Changes	 in	 climate	 could	 be	 included	 in	 more	 sophisticated	 models	 of	 river	

profiles,	 for	 instance	by	making	knickpoint	 retreat	 rates	 time-dependent.	 	This	

was	 not	 attempted	 here	 to	 keep	 the	 model	 simple,	 and	 not	 add	 a	 further	

uncertain	parameter.		

Changes	 in	 intraplate	 stresses	 across	 the	 Australian	 plate	 (Müller	 et	 al.,	 2012)	

could	induce	surface	uplift	over	short	(~1-5	Myr)	time	periods.	Indeed,	Miocene	

fault	 inversion	and	north-south	anticlinal	 folding,	attributed	the	collision	of	 the	

Indo-Australian	and	Eurasian	plates	(Borissova	et	al.,	2010,	Iasky,	2003,	Harris,	

1994),	occurs	offshore	Western	Australia,	but	only	north	of	~28ºS	(Kempton	et	

al.,	 2011,	 Iasky,	 2003).	 Onshore,	 the	 east-west	 orientation	 of	 the	 maximum	

horizontal	 stresses	 in	 the	 Yilgarn	 Craton	 should	 result	 in	 preferential	

reactivation	 of	 north–south	 striking	 structures,	 which	 is	 at	 odds	 with	 the	

Neogene	seismic	quiescence	of	the	Darling	Fault	(Quigley	et	al.,	2010,	Clark	and	

Leonard,	2003),	a	Cambrian	tectonic	feature	bounding	the	eastern	margin	of	the	

Perth	 Basin	 (Fig.	 1;	 Veevers	 and	 Morgan,	 2000).	 However,	 recent	 seismicity	

(1888-2000	earthquakes	of	magnitude	>	5.5,	Fig.	6A;	Dent,	2008),	indicates	that	

some	 fault	 reactivation	 has	 occurred	 in	 south	 Western	 Australia.	 	 The	

distribution	of	this	seismicity	(Fig.	6A)	suggests	that	lithospheric	processes	may	

influence	Western	Australian	topography.		

Edge-driven	convection	may	result	in	vertical	motions	of	time-scales	of	~10	Myr	

and	up	to	~200	km	outboard	of	a	 lithospheric	step	(King	and	Anderson,	1998),	

and	this	effect	may	be	enhanced	for	a	fast-moving	plate	(Farrington	et	al.,	2010).		

This	process	may	have	occurred	in	south	Western	Australia	given	the	fast	motion	

of	 Australia	 since	 ~40	Ma	 (Whittaker	 et	 al.,	 2007),	 the	 steep	 gradient	 of	

lithospheric	thickness	between	the	Yilgarn	Craton	and	the	Perth	Basin	(Kennett	

and	Salmon,	2012),	and	recent	magmatic	activity	along	 the	Western	Australian	

margin	(Gorter,	2009).		Three-dimensional	box	models	suggest	that	edge-driven	

convection	 at	 the	 trailing	 edge	 of	 a	 fast	moving	may	 result	 in	 vertical	motions	
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>	660	km	downstream	from	the	plate	and	~80	Myr	after	acceleration	of	the	plate	

(Farrington	 et	 al.,	 2010).	 	 Further	 work	 is	 required	 to	 determinate	 whether	

small-scale	convection	could	explain	part	of	the	surface	uplift	observed	in	south	

Western	Australia.	

	

5.	Conclusion		
River	 profiles	 are	 sensitive	 to	 vertical	 motions	 and	 contain	 information	

pertaining	 to	 past	 uplift	 events	 (Whipple	 and	 Tucker,	 1999).	 South	 Western	

Australian	 rivers	 consistently	 display	 a	 knickzone	 at	 ~200	±	20	m,	 suggesting	

they	 recorded	 a	 common	 uplift	 history	 (Niemann	 et	 al.,	 2001).	 	 Applying	 an	

inverse	 algorithm	 (Pritchard	 et	 al.,	 2009),	 we	 show	 that	 these	 rivers	 have	

recorded	~200	m	of	 surface	 uplift	 since	 the	mid-Eocene.	 Predicted	 uplift	 rates	

increased	 from	 ~45-40	Ma	 onwards,	 and	 peaked	 at	 22	m	Myr-1	 during	 the	

Neogene.	 	 This	 surface	 uplift	 is	 consistent	 with	 the	 regional	 occurrence	 of	

elevated	 outcrops	 of	 shallow-marine	 Cenozoic	 sediments.	 	We	 show	 that	 long-

wavelength	 dynamic	 topography	 cannot	 solely	 account	 for	 this	 uplift	 history.		

However,	the	timing	of	changes	in	base	level,	defined	as	the	difference	between	

dynamic	topography	and	eustasy,	are	consistent	with	the	uplift	history	derived	

from	longitudinal	river	profiles.		Although	secondary	processes	such	as	changes	

in	 far-field	 stresses	 and	 in	 climate	 may	 be	 at	 play,	 we	 propose	 that	 the	 post	

45	Ma	 evolution	 of	 drainage	 basins	 in	 south	 Western	 Australia	 is	 mainly	

explained	by	eustasy	and	the	migration	of	Australia	away	from	a	broad	dynamic	

topography	low	related	to	the	remnants	of	an	ancient	Pacific	slab	(Gurnis	et	al.,	

1998).		
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Figure	Captions	

	

Figure	1:	Longitudinal	river	profiles	(labelled	1-	18	and	a	–	b)	extracted	from	an	

SRTM	3s	DEM	(Rabus	et	al.,	2003).	Profiles	are	colour-coded	by	regions.	South	

Western	Australia	(SWA)	–	orange,	rivers	that	underwent	documented	drainage	

reversal	 –	 green,	 north	 Western	 Australia	 (NWA)–	 Blue,	 Northern	 Territories	

(NT)	–	Red,	north	Queensland	(NQLD)	–	purple.	Profile	geometry	varies	across	

the	 continent.	River	profiles	 in	Western	Australia	 are	underlain	by	 the	Darling	

Fault	 (white	 line)	 and	 the	Perth	Basin	 (cyan	outline).	 SWA	 river	 profiles	 show	

major	knickzones	(Whipple	and	Tucker,	1999)	that	become	less	pronounced	in	

NWA,	 from	 where	 profiles	 are	 concave.	 Inset:	 south	Western	 Australian	 river	

profiles,	 major	 knickzones	 (red	 dots),	 200	 m	 contour	 elevation	 (white),	 and	

reactivated		Late	Neogene	–	Quaternary	faults		(yellow;	Clark	et	al.,	2012).	

	

Figure	 2:	 Parameter	 sensitivity	 study	 for	 n	 =	 1,	 knickpoint	 retreat	 rates	

0.0125	<	vo	<	60	m	(1-m)	Myr-1	and	slope	exponent	0.4	<	m	<	0.7	for	the	Gardiner	

River.	 (a)	 Maximum	 magnitudes	 of	 uplift	 rate,	 U(τ),	 and	 (b)	 maximum	

characteristic	uplift	recording	time,	τ.	Both	vary	by	one	order	of	magnitude	over	

the	selected	parameter	range.	Gold	stars	show	the	parameters	used	in	this	study,	

m	=	0.5	and	vo	=	5	m	(1-m)	Myr-1	that	results	in	maximum	uplift	rate	<	10	m	Myr-1	

and	characteristic	uplift	recording	time	~120	Myr	for	the	Gardiner	river.	

	

Figure	 3:	 South	Western	 Australian	 longitudinal	 river	 profiles	 and	 underlying	

bedrock	 lithology	 (Tyler	 and	 Hocking,	 2008)	 divided	 based	 on	 erosional	

resistance	(Roberts	and	White,	2010,	Sklar	and	Dietrich,	2001).	Note	the	absence	

of	 correlation	 between	 the	 location	 of	 major	 knickzones	 and	 change	 in	

underlying	lithology,	to	the	possible	exception	of	the	Phillips	River	(2).	

	

Figure	4:	Predicted	uplift	rate	histories	calculated	using	the	method	of	Pritchard	

et	al.	(2009)	for	south	Western	Australian	longitudinal	river	profiles.	Uplift	rates	

increase	 from	 ~40	 Ma,	 with	 maximum	 rates	 recorded	 during	 the	 Neogene.	

Exhumation	 deduced	 from	 apatite	 fission	 track	 analysis	 is	 shown	 in	 green	
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(green;	 Kohn	 et	 al.,	 2002),	 rates	 of	 dynamic	 topography	 change	 are	 shown	 in	

grey	(Heine	et	al.,	2010),	and	rate	of	base	level	change	is	shown	in	brown.		

	

Figure	 5:	 (a)	 Cumulative	 uplift	 normalised	 to	 present-day,	 for	 south	Western	

Australian	 rivers.	The	present-day	 outcrop	 elevation	 of	 shallow-marine	Eocene	

deposits	 (white	 box;	 Gammon	 et	 al.,	 2000)	 is	 used	 to	 calibrate	m	 and	 vo.	 The	

present-day	 elevation	 (and	 estimated	 associated	 error)	 of	 shallow-marine	

Oligocene	 (Cope,	 1975)	 and	mid-Miocene	 (Lowry,	 1970)	 is	 shown	 in	 cyan.	 (b)	

Location	of	shallow-marine	Eocene	deposits	(gold	star;	Gammon	et	al.,	2000)	and	

100	m	and	200	m	contours	(grey).	

	

Figure.	 6:	 (a)	 Mid-Miocene	 marine	 deposits	 coloured	 by	 their	 present-day	

elevation,	 extent	 of	 offshore	 Mid-Miocene	 shallow-marine	 deposits	 (Nullarbor	

limestone	 and	 Plumridge	 limestone),	 south	 Western	 Australian	 river	 profiles	

(orange),	 major	 knickzones	 (red),	 onshore	 Eucla	 Basin	 (black)	 and	 Bremer	

(brown)	 basins,	main	 outcrops	 of	 Pallinup	 Formation	 (gold	 stars)	 and	 1888	 –	

2000	earthquakes	of	magnitude	≥	5.5	(white	circles;	Dent,	2008)	.	(b)	Latitudinal	

variations	 in	 elevations	 of	 Australian	 mid-Miocene	 limestones.	 Red	 stars	

represent	 median	 elevations	 for	 limestones	 north	 and	 south	 of	 300S,	

respectively,	 consistent	 with	 a	 north-south	 continental	 scale	 tilt	 (Sandiford,	

2007).	

	

Figure	 7:	Dynamic	 topography	predicted	by	a	backward	advection	model	at	0,	

10,	20,	25,	30,	and	40	Ma	across	the	Australia	continent	(Heine	et	al.,	2010).	The	

Australian	continent	migrates	across	a	broad-scale	dynamic	topography	low,	due	

to	 the	 sinking	 of	 the	 slab	 originating	 from	 the	 subduction	 zone	 that	 separated	

Eastern	 Gondwanaland	 from	 the	 paleo-Pacific	 Ocean	 during	 the	 Cretaceous	

(Gurnis	 et	 al.,	 1998).	 G.	 Evolution	 of	 long	wavelength	 dynamic	 topography	 for	

south	 Western	 Australia.	 Hatched	 grey	 envelope	 represents	 range	 of	 values	

sampled	at	river	mouths.		Evolution	of	long	wavelength	eustatic	sea	level	(cyan;	

Haq	and	Al-Qahtani,	2005).		
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