2,977 research outputs found

    Angiotensin II receptor blockade alleviates calcineurin inhibitor nephrotoxicity by restoring cyclooxygenase 2 expression in kidney cortex

    Get PDF
    Aim: The use of calcineurin inhibitors such as cyclosporine A (CsA) for immunosuppression after solid organ transplantation is commonly limited by renal side effects. CsA-induced deterioration of glomerular filtration rate and sodium retention may be related to juxtaglomerular dysregulation as a result of suppressed cyclooxygenase 2 (COX-2) and stimulated renin biosynthesis. We tested whether CsA-induced COX-2 suppression is caused by hyperactive renin-angiotensin system (RAS) and whether RAS inhibition may alleviate the related side effects. Methods: Rats received CsA, the RAS inhibitor candesartan, or the COX-2 inhibitor celecoxib acutely (3 days) or chronically (3 weeks). Molecular pathways mediating effects of CsA and RAS on COX-2 were studied in cultured macula densa cells. Results: Pharmacological or siRNA-mediated calcineurin inhibition in cultured cells enhanced COX-2 expression via p38 mitogen-activated protein kinase and NF-kB signalling, whereas angiotensin II abolished these effects. Acute and chronic CsA administration to rats led to RAS activation along with reduced cortical COX-2 expression, creatinine clearance and fractional sodium excretion. Evaluation of major distal salt transporters, NKCC2 and NCC, showed increased levels of their activating phosphorylation upon CsA. Concomitant candesartan treatment blunted these effects acutely and completely normalized the COX-2 expression and renal functional parameters at long term. Celecoxib prevented the candesartan-induced improvements of creatinine clearance and sodium excretion. Conclusion: Suppression of juxtaglomerular COX-2 upon CsA results from RAS activation, which overrides the cell-autonomous, COX-2-stimulatory effects of calcineurin inhibition. Angiotensin II antagonism alleviates CsA nephrotoxicity via the COX-2-dependent normalization of creatinine clearance and sodium excretion

    Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning.

    Full text link
    It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure

    Why Some Interfaces Cannot be Sharp

    Full text link
    A central goal of modern materials physics and nanoscience is control of materials and their interfaces to atomic dimensions. For interfaces between polar and non-polar layers, this goal is thwarted by a polar catastrophe that forces an interfacial reconstruction. In traditional semiconductors this reconstruction is achieved by an atomic disordering and stoichiometry change at the interface, but in multivalent oxides a new option is available: if the electrons can move, the atoms don`t have to. Using atomic-scale electron energy loss spectroscopy we find that there is a fundamental asymmetry between ionically and electronically compensated interfaces, both in interfacial sharpness and carrier density. This suggests a general strategy to design sharp interfaces, remove interfacial screening charges, control the band offset, and hence dramatically improving the performance of oxide devices.Comment: 12 pages of text, 6 figure

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    The effectiveness and satisfaction of web-based physiotherapy in people with spinal cord injury: a pilot randomised controlled trial

    Get PDF
    Study Design: Pilot randomised controlled trial. Objectives: The aims of this study were to evaluate the effectiveness and participant satisfaction of web-based physiotherapy for people with Spinal Cord Injury (SCI). Setting: Community patients of a national spinal injury unit in a university teaching hospital, Scotland, UK. Methods: Twenty-four participants were recruited and randomised to receive eight weeks of web-based physiotherapy (intervention), twice per week, or usual care (control). Individual exercise programmes were prescribed based upon participant’s abilities. The intervention was delivered via a website (www.webbasedphysio.com) and monitored and progressed remotely by the physiotherapist. Results: Participants logged on to the website an average of 1.4±0.8 times per week. Between-group differences, although not significant were more pronounced for the 6 minute walk test. Participants were positive about using web-based physiotherapy and stated they would be happy to use it again and would recommend it to others. Overall it was rated as either good or excellent. Conclusions: Web-based physiotherapy was feasible and acceptable for people with SCI. Participants achieved good compliance with the intervention, rated the programme highly and beneficial for health and well-being at various states post injury. The results of this study warrant further work with a more homogenous sample

    Tailored biocompatible polyurethane-poly(ethylene glycol) hydrogels as a versatile nonfouling biomaterial

    Get PDF
    Polyurethane-based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane-poly(ethylene glycol) (PU-PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one-pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long-term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU-PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU-based biomaterials for a variety of applications

    Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: a prospective genomic study

    Get PDF
    BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonotic pathogen endemic to the Arabian Peninsula. Dromedary camels are a likely source of infection and the virus probably originated in Africa. We studied the genetic diversity, geographical structure, infection prevalence, and age-associated prevalence among camels at the largest entry port of camels from Africa into the Arabian Peninsula. METHODS: In this prospective genomic study, we took nasal samples from camels imported from Sudan and Djibouti into the Port of Jeddah in Jeddah, Saudi Arabia, over an almost 2-year period and local Arabian camels over 2 months in the year after surveillance of the port. We determined the prevalence of MERS-CoV infection, age-associated patterns of infection, and undertook phylogeographical and migration analyses to determine intercountry virus transmission after local lineage establishment. We compared all virological characteristics between the local and imported cohorts. We compared major gene deletions between African and Arabian strains of the virus. Reproductive numbers were inferred with Bayesian birth death skyline analyses. FINDINGS: Between Aug 10, 2016, and May 3, 2018, we collected samples from 1196 imported camels, of which 868 originated from Sudan and 328 from Djibouti, and between May 1, and June 25, 2018, we collected samples from 472 local camels, of which 189 were from Riyadh and 283 were from Jeddah, Saudi Arabia. Virus prevalence was higher in local camels than in imported camels (224 [47·5%] of 472 vs 157 [13·1%] of 1196; p<0·0001). Infection prevalence peaked among camels older than 1 year and aged up to 2 years in both groups, with 255 (66·9%) of 381 positive cases in this age group. Although the overall geographical distribution of the virus corresponded with the phylogenetic tree topology, some virus exchange was observed between countries corresponding with trade routes in the region. East and west African strains of the virus appear to be geographically separated, with an origin of west African strains in east Africa. African strains of the virus were not re-sampled in Saudi Arabia despite sampling approximately 1 year after importation from Africa. All local Arabian samples contained strains of the virus that belong to a novel recombinant clade (NRC) first detected in 2014 in Saudi Arabia. Reproduction number estimates informed by the sequences suggest sustained endemicity of NRC, with a mean Re of 1·16. INTERPRETATION: Despite frequent imports of MERS-CoV with camels from Africa, African lineages of MERS-CoV do not establish themselves in Saudi Arabia. Arabian strains of the virus should be tested for changes in virulence and transmissibility. FUNDING: German Ministry of Research and Education, EU Horizon 2020, and Emerging Diseases Clinical Trials Partnership

    ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks.</p> <p>Results</p> <p>Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded <it>cleavable </it>crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks.</p> <p>Conclusion</p> <p>The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: <url>http://www.creativemolecules.com/CM_Software.htm</url></p

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
    • …
    corecore