28 research outputs found

    The Influence of Temperature on Coumarin 153 Fluorescence Kinetics

    Get PDF
    The influence of temperature varied in the range 183 K–323 K on the fluorescence quantum yield, fluorescence lifetime, absorption and emission transition moments and non-radiative deactivation rate was determined for the well known and largely used dye Coumarin 153, dissolved in 1-chloropropane. The Kennard-Stepanov relation connecting the absorption and emission spectra was used to check for the presence of more than one absorbing/emitting species and to investigate whether intramolecular vibrational redistribution completes in the C153 excited S1 state before the emission takes place. The emission spectrum corresponding to S1→S0 transition, was fitted at each temperature to the model function including the information on the dye vibrational modes coupling. In this way the displacement in equilibrium distance for the most active vibrational mode was determined for C153 in S1 and in S0. Using the temperature dependence of the fluorescence decay time and quantum yield, the non-radiative deactivation rate was determined. Its temperature dependence was compared to that calculated using the theoretical model with the most active vibrational mode displacement values taken from steady-state spectra analysis. The somewhat surprising dependence of the fluorescence decay time and quantum yield on temperature was related to non-trivial coupling between low-frequency vibrational modes of C153 in the excited and ground states

    The NSL Complex Regulates Housekeeping Genes in Drosophila

    Get PDF
    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription

    The surface charge of trypanosomatids

    Full text link

    Excited-state intramolecular proton transfer in jet-cooled 3-hydroxyflavone. Deuteration studies, vibronic double-resonance experiments, and semiempirical (AM1) calculations of potential-energy surfaces

    Get PDF
    3-Hydroxyflavone (3-HF) and 3-deuteroxyflavone (3-DF) were examd. by fluorescence excitation spectroscopy in a supersonic free jet. Compared to 3-HF, vibronic bands of 3-DF are significantly narrower. Substitution of H by D also appears to split vibronic bands into at least three bands leading to a congested spectrum. Fluorescence-dip double-resonance spectroscopy revealed that the complicated spectrum of 3-DF consists of at least three independent partial spectra which are superimposed. The vibrational pattern of every partial spectrum is identical to that of 3-HF, but partial spectra differ in their spectral position. Semiempirical calcns. (MNDO/AM1 with limited CI) were used to generate ground- and singlet excited-state potential energy surfaces as a function of Ph and hydroxyl torsional angles. The deuteration effects suggest the existence of potential energy barriers to low-frequency hydroxyl hydrogen motion, with barrier height on the order of the vibrational zero-point energy
    corecore