54 research outputs found

    Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells.

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach

    Nasopharyngeal Microbiota in Infants With Acute Otitis Media

    Get PDF
    Background. Interspecies interactions of the nasopharyngeal microbiota are likely to be involved in the pathogenesis of acute otitis media (AOM). Capturing the breadth of microbial interactions requires a detailed description of the microbiota during health and AOM. Methods. The nasopharyngeal microbiota of 163 infants with (n = 153) or without (n = 10) AOM was characterized using nasopharyngeal swabs and multiplexed pyrosequencing of 16S rRNA. Nasopharyngeal swab specimens were collected during 4 winter seasons from 2004 through 2010 for infants with AOM and during 2010 for controls. Results. Fifty-eight bacterial families were identified, of which Moraxellaceae, Streptococcaceae, and Pasteurellaceae were the most frequent. Commensal families were less prevalent in infants with AOM than in controls. In infants with AOM, prior exposure to antimicrobials and administration of the heptavalent conjugated pneumococcal polysaccharide vaccine (PCV7) were also associated with reduced prevalence of distinct commensal families (Streptococcaceae and Corynebacteriaceae). In addition, antimicrobial exposure increased the prevalence of Enterobacteriaceae and the abundance of Pasteurellaceae. Other factors, such as age, sex, day care, and a history of recurrent AOM, did not influence the microbiota. Conclusions. Infants' nasopharyngeal microbiota undergoes significant changes during AOM and after exposure to antimicrobials and PCV7, which is mainly attributable to reduced prevalence of commensal bacterial familie

    Transmission Dynamics of Extended-Spectrum β-lactamase-Producing Enterobacteriaceae in the Tertiary Care Hospital and the Household Setting

    Get PDF
    Transmission of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in households outweighs nosocomial dissemination in the non-outbreak setting. Importation of ESBL producers into the hospitals is as frequent as transmission during hospital stay. ESBL-Klebsiella pneumoniae might be more efficiently transmitted within the hospital than ESBL-Escherichia col

    Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont

    Get PDF
    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton

    The Relevance of Advanced Therapy Medicinal Products in the Field of Transplantation and the Need for Academic Research Access:Overcoming Bottlenecks and Claiming a New Time

    Get PDF
    The field of transplantation has witnessed the emergence of Advanced Therapy Medicinal Products (ATMPs) as highly promising solutions to address the challenges associated with organ and tissue transplantation. ATMPs encompass gene therapy, cell therapy, and tissue-engineered products, hold immense potential for breakthroughs in overcoming the obstacles of rejection and the limited availability of donor organs. However, the development and academic research access to ATMPs face significant bottlenecks that hinder progress. This opinion paper emphasizes the importance of addressing bottlenecks in the development and academic research access to ATMPs by implementing several key strategies. These include the establishment of streamlined regulatory processes, securing increased funding for ATMP research, fostering collaborations and partnerships, setting up centralized ATMP facilities, and actively engaging with patient groups. Advocacy at the policy level is essential to provide support for the development and accessibility of ATMPs, thereby driving advancements in transplantation and enhancing patient outcomes. By adopting these strategies, the field of transplantation can pave the way for the introduction of innovative and efficacious ATMP therapies, while simultaneously fostering a nurturing environment for academic research.</p

    Drug-induced eRF1 degradation promotes readthrough and reveals a new branch of ribosome quality control.

    Get PDF
    Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25

    Polysaccharide capsule composition of pneumococcal serotype 19A subtypes: Unaltered among subtypes and independent of the nutritional environment

    Get PDF
    Serotype 19A strains have emerged as a cause of invasive pneumococcal disease after the introduction of the seven-valent pneumococcal conjugate vaccine (PCV7) and serotype 19A has now been included in the recent thirteen-valent vaccine (PCV13). Genetic analysis has revealed at least three different capsular serotype 19A subtypes and nutritional environment dependent variation of the 19A capsule structure has been reported. Pneumococcal vaccine effectiveness and serotyping accuracy might be impaired by structural differences in serotype 19A capsules. We therefore analyzed the distribution of 19A subtypes collected within a Swiss national surveillance program and determined capsule composition in different nutritional conditions with high-performance liquid chromatography (HPLC), gas chromatography – mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). After the introduction of PCV7 a significant relative increase of subtype 19A-II and decrease of 19A-I occurred. Chemical analyses showed no difference in the composition as well as the linkage of 19A subtype capsular saccharides grown in defined and undefined growth media being consistent with a trisaccharide repeat unit composed of rhamnose, N-acetyl-mannosamine and glucose. In summary, our study suggests that no structural variance dependent of the nutritional environment or the subtype exists. The serotype 19A subtype shift observed after the introduction of the PCV7 can therefore not be explained by selection of a capsule variant. However, capsule composition analysis of emerging 19A clones is recommended in cases where there is no other explanation for a selective advantage such as antibiotic resistance or loss or acquisition of other virulence factor

    Improvement of antibiotic prescription in outpatient care: a cluster-randomized intervention study using a sentinel surveillance network of physicians

    Get PDF
    Objectives To assess the effectiveness of implementing guidelines, coupled with individual feedback, on antibiotic prescribing behaviour of primary care physicians in Switzerland. Methods One hundred and forty general practices from a representative Swiss sentinel network of primary care physicians participated in this cluster-randomized prospective intervention study. The intervention consisted of providing guidelines on treatment of respiratory tract infections (RTIs) and uncomplicated lower urinary tract infections (UTIs), coupled with sustained, regular feedback on individual antibiotic prescription behaviour during 2 years. The main aims were: (i) to increase the percentage of prescriptions of penicillins for all RTIs treated with antibiotics; (ii) to increase the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics; (iii) to decrease the percentage of quinolone prescriptions for all cases of exacerbated COPD (eCOPD) treated with antibiotics; and (iv) to decrease the proportion of sinusitis and other upper RTIs treated with antibiotics. The study was registered at ClinicalTrials.gov (NCT01358916). Results While the percentage of antibiotics prescribed for sinusitis or other upper RTIs and the percentage of quinolones prescribed for eCOPD did not differ between the intervention group and the control group, there was a significant increase in the percentage of prescriptions of penicillins for all RTIs treated with antibiotics [57% versus 49%, OR = 1.42 (95% CI 1.08-1.89), P = 0.01] and in the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics [35% versus 19%, OR = 2.16 (95% CI 1.19-3.91), P = 0.01] in the intervention group. Conclusions In our setting, implementing guidelines, coupled with sustained individual feedback, was not able to reduce the proportion of sinusitis and other upper RTIs treated with antibiotics, but increased the use of recommended antibiotics for RTIs and UTIs, as defined by the guideline

    A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence.

    Get PDF
    BACKGROUND: The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS: Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS: We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential
    • …
    corecore