46 research outputs found

    Structure-Based Prediction of Asparagine and Aspartate Degradation Sites in Antibody Variable Regions

    Get PDF
    Monoclonal antibodies (mAbs) and proteins containing antibody domains are the most prevalent class of biotherapeutics in diverse indication areas. Today, established techniques such as immunization or phage display allow for an efficient generation of new mAbs. Besides functional properties, the stability of future therapeutic mAbs is a key selection criterion which is essential for the development of a drug candidate into a marketed product. Therapeutic proteins may degrade via asparagine (Asn) deamidation and aspartate (Asp) isomerization, but the factors responsible for such degradation remain poorly understood. We studied the structural properties of a large, uniform dataset of Asn and Asp residues in the variable domains of antibodies. Their structural parameters were correlated with the degradation propensities measured by mass spectrometry. We show that degradation hotspots can be characterized by their conformational flexibility, the size of the C-terminally flanking amino acid residue, and secondary structural parameters. From these results we derive an accurate in silico prediction method for the degradation propensity of both Asn and Asp residues in the complementarity-determining regions (CDRs) of mAbs

    The Biosynthesis of d-Galacturonate in Plants. Functional Cloning and Characterization of a Membrane-Anchored UDP-d-Glucuronate 4-Epimerase from Arabidopsis

    No full text
    Pectic cell wall polysaccharides owe their high negative charge to the presence of d-galacturonate, a monosaccharide that appears to be present only in plants and some prokaryotes. UDP-d-galacturonate, the activated form of this sugar, is known to be formed by the 4-epimerization of UDP-d-glucuronate; however, no coding regions for the epimerase catalyzing this reaction have previously been described in plants. To better understand the mechanisms by which precursors for pectin synthesis are produced, we used a bioinformatics approach to identify and functionally express a UDP-d-glucuronate 4-epimerase (GAE1) from Arabidopsis. GAE1 is predicted to be a type II membrane protein that belongs to the family of short-chain dehydrogenases/reductases. The recombinant enzyme expressed in Pichia pastoris established a 1.3:1 equilibrium between UDP-d-galacturonate and UDP-d-glucuronate but did not epimerize UDP-d-Glc or UDP-d-Xyl. Enzyme assays on cell extracts localized total UDP-d-glucuronate 4-epimerase and recombinant GAE1 activity exclusively to the microsomal fractions of Arabidopsis and Pichia, respectively. GAE1 had a pH optimum of 7.6 and an apparent K(m) of 0.19 mm. The recombinant enzyme was strongly inhibited by UDP-d-Xyl but not by UDP, UDP-d-Glc, or UDP-d-Gal. Analysis of Arabidopsis plants transformed with a GAE1:GUS construct showed expression in all tissues. The Arabidopsis genome contains five GAE1 paralogs, all of which are transcribed and predicted to contain a membrane anchor. This suggests that all of these enzymes are targeted to an endomembrane system such as the Golgi where they may provide UDP-d-galacturonate to glycosyltransferases in pectin synthesis

    Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase

    No full text
    Plant cell walls are composed of a large number of complex polysaccharides, which contain at least 13 different monosaccharides in a multitude of linkages. This structural complexity of cell wall components is paralleled by a large number of predicted glycosyltransferases in plant genomes, which can be grouped into several distinct families based on conserved sequence motifs (B. Henrissat, G.J. Davies [2000] Plant Physiol 124: 1515-1519). Despite the wealth of genomic information in Arabidopsis and several crop plants, the biochemical functions of these coding regions have only been established in a few cases. To lay the foundation for the genetic and biochemical characterization of putative glycosyltransferase genes, we conducted a phylogenetic and expression analysis on 10 predicted coding regions (AtGT11-20) that are closely related to the MUR3 xyloglucan galactosyltransferase of Arabidopsis. All of these proteins contain the conserved sequence motif pfam 03016 that is the hallmark of the β-d-glucuronosyltransferase domain of exostosins, a class of animal enzymes involved in the biosynthesis of the extracellular polysaccharide heparan sulfate. Reverse transcriptase-polymerase chain reaction and promoter:β-glucuronidase studies indicate that all AtGT genes are transcribed. Although six of the 10 AtGT genes were expressed in all major plant organs, the remaining four genes showed more restricted expression patterns that were either confined to specific organs or to highly specialized cell types such as hydathodes or pollen grains. T-DNA insertion mutants in AtGT13 and AtGT18 displayed reductions in the Gal content of total cell wall material, suggesting that the disrupted genes encode galactosyltransferases in plant cell wall synthesis

    From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies

    No full text
    The identification and quantification of post-translational modifications (PTMs) is a crucial step required during the development of therapeutic proteins. In particular, the characterization of charge variants separated by cation exchange chromatography (CEX) is a tedious process commonly performed with an off-line manual fraction collection followed by peptide mapping. To improve the efficiency of this time-consuming approach, a generic on-line multi-dimensional LC/MS approach was developed for the characterization of various monoclonal antibody (mAb) isotypes and a bi-specific antibody (BsAb). Fractions collected from 1D CEX analysis were consecutively reduced on a 2D reversed phase liquid chromatography (RPLC) column (polyphenyl), digested within 1–2 min using a 3D immobilized trypsin cartridge, and finally the obtained peptides were separated on another 4D RPLC column (C18), and simultaneously identified with a Q Exactive™ mass spectrometer. 2D RPLC columns and 3D trypsin cartridges from different suppliers were compared, as well as the effects of reducing agents. The effect of 2D and 4D RPLC column temperature, and 2D RPLC column mass load were also systematically studied. Under optimal conditions, the multi-dimensional LC/MS system described in this paper is a robust tool for the on-line digestion of proteins and shows high repeatability. Similar levels of oxidation and deamidation were measured using the off-line and on-line approaches for the same stressed samples. The lower amounts of deamidation and isomerization measured at some asparagine and aspartic acid residues by the on-line approach compared to the manual off-line procedure suggest reduced artifacts using the on-line methodology. The multi-dimensional LC/MS described here enables fast, on-line, automated characterization of therapeutic antibodies without the need for off-line fraction collection and sample pre-treatment (manual approach). The entire workflow can be completed within less than one day, compared to weeks with the manual off-line procedure

    Simultaneous Assessment of Asp Isomerization and Asn Deamidation in Recombinant Antibodies by LC-MS following Incubation at Elevated Temperatures

    Get PDF
    The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies. In order to reduce the time for simultaneous identification and functional evaluation of potential asparagine deamidation and aspartate isomerization sites, a test system employing accelerated temperature conditions and proteolytic peptide mapping combined with quantitative UPLC-MS was developed. This method occupies the formulation buffer system histidine/HCl (20 mM; pH 6.0) for denaturation/reduction/digestion and eliminates the alkylation step. The achieved degree of asparagine deamidation and aspartate isomerization was adequate to identify the functional consequence by binding studies. In summary, the here presented approach greatly facilitates the evaluation of fermentation, purification, formulation, and storage conditions on antibody asparagine deamidation and aspartate isomerization by monitoring susceptible marke

    Inter-laboratory study to evaluate the performance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS

    No full text
    An international study was conducted to evaluate the performance and reliability of an online multi-dimensional (mD)-LC-MS/MS approach for the characterization of antibody charge variants. The characterization of antibody charge variants is traditionally performed by time-consuming, offline isolation of charge variant fractions by ion exchange chromatography (IEC) that are subsequently subjected individually to LC-MS/MS peptide mapping. This newly developed mD-LC-MS/MS approach enables automated and rapid characterization of charge variants using much lower sample requirements. This online workflow includes sample reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis within a single, fully-automated procedure. The benefits of using online mD-LC-MS/MS for variant characterization include fewer handling steps, a more than 10-fold reduction in required sample amount, reduced sample hold time as well as a shortening of the overall turnaround time from weeks to few days compared to standard offline procedures. In this site-to-site comparison study, we evaluated the online peptide mapping data collected from charge variants of trastuzumab (Herceptin®) across three international laboratories. The purpose of this study was to compare the overall performance of the online mD-LC-MS/MS approach for antibody charge variant characterization, with all participating sites employing different mD-LC-MS/MS setups (e.g., instrument vendors, modules, columns, CDS software). The high sequence coverage (95%–97%) obtained in each laboratory, enabled a reproducible generation of tryptic peptides and the comparison of values of the charge variants. Results obtained at all three participating sites were in good agreement, highlighting the reliability and performance of this approach, and correspond with data gained by the standard offline procedure. Overall, our results underscore of the benefit mD-LC-MS/MS technology for therapeutic antibody characterization, confirming its potential to become an important tool in the toolbox of protein characterization scientists
    corecore