7,683 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Global microscopic calculations of ground-state spin and parity for odd-mass nuclei
Systematic calculations of ground-state spin and parity of odd-mass nuclei
have been performed within the Hartree--Fock--BCS (HFBCS) approach and the
Finite-Range Droplet Model for nuclei for which experimental data are
available. The unpaired nucleon has been treated perturbatively, and axial and
left-right reflection symmetries have been assumed. As for the HFBCS approach,
three different Skyrme forces have been used in the particle-hole channel,
whereas the particle-particle matrix elements have been approximated by a
seniority force. The calculations have been done for the 621 nuclei for which
the Nubase 2003 data set give assignments of spin and parity with strong
arguments. The agreement of both spin and parity in the self-consistent model
reaches about 80% for spherical nuclei, and about 40% for well-deformed nuclei
regardless of the Skyrme force used. As for the macroscopic-microscopic
approach, the agreement for spherical nuclei is about 90% and about 40% for
well-deformed nuclei, with different sets of spherical and deformed nuclei
found in each model.Comment: 5 pages, 4 figures (three in color), 1 table, to be submitted to
Physical Review
Effects of haloperidol and atypical neuroleptics on psychomotor performance and driving ability in schizophrenic patients - Results from an experimental study
The influence of antipsychotic treatment on the neuropsychological and psychomotor performance of schizophrenic patients is still a subject of investigation. The present study was designed to evaluate the effects of atypical neuroleptics in comparison with a conventional dopamine antagonist neuroleptic (haloperidol) on several dimensions of psychomotor performance (visual perception, attention, reaction time, and sensorimotor performance) considered to be of relevance in evaluating driving fitness. Psychomotor performance was assessed by means of the ART 90, a computerized Act and React Test which is generally used in diagnosis of psychomotor performance. The 49 participating patients were examined at discharge following psychopathological stabilisation; 20 received haloperidol, 29 received an atypical neuroleptic. Our findings demonstrate a remarkably reduced psychomotor performance in the haloperidol-treated group of schizophrenic patients compared with patients treated with atypical neuroleptics. Only 1 (5%) subject passed all subtests without major failures and could be regarded as competent to drive. Among patients with atypical neuroleptics, 7 patients (24%) passed all test parameters without major failures. Copyright (C) 2003 S. Karger AG, Basel
Paired composite fermion wavefunctions
We construct a family of BCS paired composite fermion wavefunctions that
generalize, but remain in the same topological phase as, the Moore-Read
Pfaffian state for the half-filled Landau level. It is shown that for a wide
range of experimentally relevant inter-electron interactions the groundstate
can be very accurately represented in this form.Comment: 4 pages, 2 figure
Density waves and supersolidity in rapidly rotating atomic Fermi gases
We study theoretically the low-temperature phases of a two-component atomic
Fermi gas with attractive s-wave interactions under conditions of rapid
rotation. We find that, in the extreme quantum limit, when all particles occupy
the lowest Landau level, the normal state is unstable to the formation of
"charge" density wave (CDW) order. At lower rotation rates, when many Landau
levels are occupied, we show that the low-temperature phases can be
supersolids, involving both CDW and superconducting order.Comment: 4 pages, 1 figure, uses feynmp.st
- …