7,683 research outputs found

    Microscopic Enhancement of Heavy-Element Production

    Get PDF
    Realistic fusion barriers are calculated in a macroscopic-microscopic model for several soft-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a realistic picture are very different from those obtained in a purely macroscopic model. For reactions on 208:Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for soft-fusion reactions leading to compound systems near Z = 110. These results show that no significant ``extra-extra-push'' energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not included here. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of the figures, available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/mehe

    Global microscopic calculations of ground-state spin and parity for odd-mass nuclei

    Get PDF
    Systematic calculations of ground-state spin and parity of odd-mass nuclei have been performed within the Hartree--Fock--BCS (HFBCS) approach and the Finite-Range Droplet Model for nuclei for which experimental data are available. The unpaired nucleon has been treated perturbatively, and axial and left-right reflection symmetries have been assumed. As for the HFBCS approach, three different Skyrme forces have been used in the particle-hole channel, whereas the particle-particle matrix elements have been approximated by a seniority force. The calculations have been done for the 621 nuclei for which the Nubase 2003 data set give assignments of spin and parity with strong arguments. The agreement of both spin and parity in the self-consistent model reaches about 80% for spherical nuclei, and about 40% for well-deformed nuclei regardless of the Skyrme force used. As for the macroscopic-microscopic approach, the agreement for spherical nuclei is about 90% and about 40% for well-deformed nuclei, with different sets of spherical and deformed nuclei found in each model.Comment: 5 pages, 4 figures (three in color), 1 table, to be submitted to Physical Review

    Effects of haloperidol and atypical neuroleptics on psychomotor performance and driving ability in schizophrenic patients - Results from an experimental study

    Get PDF
    The influence of antipsychotic treatment on the neuropsychological and psychomotor performance of schizophrenic patients is still a subject of investigation. The present study was designed to evaluate the effects of atypical neuroleptics in comparison with a conventional dopamine antagonist neuroleptic (haloperidol) on several dimensions of psychomotor performance (visual perception, attention, reaction time, and sensorimotor performance) considered to be of relevance in evaluating driving fitness. Psychomotor performance was assessed by means of the ART 90, a computerized Act and React Test which is generally used in diagnosis of psychomotor performance. The 49 participating patients were examined at discharge following psychopathological stabilisation; 20 received haloperidol, 29 received an atypical neuroleptic. Our findings demonstrate a remarkably reduced psychomotor performance in the haloperidol-treated group of schizophrenic patients compared with patients treated with atypical neuroleptics. Only 1 (5%) subject passed all subtests without major failures and could be regarded as competent to drive. Among patients with atypical neuroleptics, 7 patients (24%) passed all test parameters without major failures. Copyright (C) 2003 S. Karger AG, Basel

    Paired composite fermion wavefunctions

    Get PDF
    We construct a family of BCS paired composite fermion wavefunctions that generalize, but remain in the same topological phase as, the Moore-Read Pfaffian state for the half-filled Landau level. It is shown that for a wide range of experimentally relevant inter-electron interactions the groundstate can be very accurately represented in this form.Comment: 4 pages, 2 figure

    Density waves and supersolidity in rapidly rotating atomic Fermi gases

    Get PDF
    We study theoretically the low-temperature phases of a two-component atomic Fermi gas with attractive s-wave interactions under conditions of rapid rotation. We find that, in the extreme quantum limit, when all particles occupy the lowest Landau level, the normal state is unstable to the formation of "charge" density wave (CDW) order. At lower rotation rates, when many Landau levels are occupied, we show that the low-temperature phases can be supersolids, involving both CDW and superconducting order.Comment: 4 pages, 1 figure, uses feynmp.st
    • …
    corecore