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Paired composite fermion wavefunctions

G. Möller1 and S. H. Simon2
1 Theory of Condensed Matter Group, Cavendish Laboratory, J. J. Thomson Ave., Cambridge CB3 0HE, UK

2 Bell Laboratories, Alcatel-Lucent, Murray Hill, New Jersey 07974

(Dated: August 20, 2007)

We construct a family of BCS paired composite fermion wavefunctions that generalize, but remain
in the same topological phase as, the Moore-Read Pfaffian state for the half-filled Landau level. It
is shown that for a wide range of experimentally relevant inter-electron interactions the groundstate
can be very accurately represented in this form.

The nature of the fractional quantum Hall effect at
ν = 5

2 has been the subject of continued interest since its
discovery roughly two decades ago [1]. The Moore-Read
Pfaffian wavefunction [2], describing p-wave pairing of
composite fermions [3], is currently the best candidate
wavefunction for this state [4, 5]. Due to the remark-
able property of having quasi-particles with non-abelian
statistics, this state has recently attracted interest in the
context of fault-tolerant topological quantum computa-
tion [6]. Though the Moore-Read state is a well estab-
lished candidate for the groundstate at ν = 5

2 , its over-
lap with the exact groundstate in simulations of small
systems is rather low in comparison to other known trial
states at different filling factors [4, 5]. This is particularly
discomforting as no explicit construction for perturba-
tions around the Moore-Read state has been previously
available, and the Moore-Read state has been described
as a somewhat unique choice [3]. Furthermore several re-
cent studies have altogether challenged the view of ν = 5

2
as being the Moore-Read state [7, 8].

In this Letter, we introduce a general representation
of paired composite fermion (CF) states, merging the
concept of BCS Hall states [9] with the explicit construc-
tion of CF wavefunctions [10, 11]. The Moore-Read state
can be cast very accurately in this form, which reveals
its connection to the pairing of composite fermions on
top of a Fermi-sea, and shows how our general paired
CF-BCS wavefunctions are adiabatically connected to
Moore-Read. We also compare our trial states to the
exact groundstates of the Coulomb Hamiltonian HC for
electrons in the 1st excited Landau level (1LL), plus an
arbitrary additional pseudopotential δV1 interaction. For
a very broad range of δV1 we find very high overlap of
our trial wavefunctions with the exact groundstate, thus
showing the extent of the Moore-Read phase.

For our description of the physics at ν = 5
2 , we shall

assume the lowest Landau level (LLL) to be entirely filled
and inert, such that the relevant degrees of freedom cor-
respond to a half filled 1LL. We assume the spin degree
of freedom of these electrons to be frozen (although the
experimental situation is less clear [12]). The 1LL is rep-
resented by wavefunctions in the LLL using appropriately
modified pseudopotential coefficients [13].

The aim of our construction is to “composite fermion-

ize” a simple BCS state. In second quantized nota-
tion, the general form of the BCS groundstate is [14]

|ΨBCS〉 =
∏

k

(

1 + gk e
iϕ c†

k
c†−k

)

|0〉 , written in an un-

normalized manner here. This wavefunction can be pro-
jected to a fixed number of particles by integration over
∫

dϕ exp(−iNϕ) such that we retain exactly N pair cre-
ation operators. The (inverse) Fourier transform into real
space then yields [14]

ΨBCS(r1, . . . , rN ) = Pf [g(ri − rj)] , (1)

where the Pfaffian Pf is an antisymmetrized sum over
all possible pairings Pf(gij) = A[g12g34 . . . gN−1,N ] =

±
√

| det gij | with A the antisymmetrization operator. In
Eq. 1, g is constrained to be an antisymmetric function,
given in terms of its Fourier components by

g(ri−rj) =
∑

k

gke
ik·(ri−rj) ≡

∑

k

gkφk(ri)φ−k(rj). (2)

For the last equivalence, we have identified the exponen-
tial factor as the product of two basis functions φk(r) =
exp(ik · r) of free electrons on the plane. This product of
free wavefunctions form is naturally generalized to spher-
ical geometry below.
In order to obtain a LLL wavefunction at filling fac-

tor ν = 1
2 , we follow Jain’s approach [10] of multiplying

a bare electron wavefunction with Jastrow factors, and
projecting the result to the LLL, yielding [15]

ΨCF

0 (z1, . . . , zN ) = PLLL







Pf [g(ri − rj)]
∏

i<j

(zi − zj)
2







where PLLL is the LLL projection operator, and zi is
the complex representation of ri. The special case g =
1/(zi−zj) reproduces the Moore-Read wavefunction (and
the projection then becomes trivial).
In order to render the projection PLLL numerically

tractable in general, we bring single particle Jastrow fac-
tors Ji =

∏

k 6=i(zi−zk) inside the Pfaffian on every line i
and every column j of the matrix gij , and project each of
the matrix elements individually [11]. As demonstrated
in Ref. [11], such slight changes in the projection prescrip-
tion do not alter the accuracy of the composite fermion-
ization procedure. It is thus expected that projecting ma-
trix elements [g(ri − rj)JiJj ] individually is very similar



2

to a projection of the full wavefunction. For further sim-
plification, one can decompose g analogous to Eq. 2, and
apply the projection separately to each of the orbitals φk

as suggested in Ref. [11]. Again this slight change in pro-
jection prescription is not expected to damage our wave-
function. Denoting φ̃k(zi) = J−1

i PLLL[φk(zi)Ji], Jastrow
factors may be factored again outside the Pfaffian, and we
obtain the final expression for general composite fermion-
ized BCS (CF-BCS) states

ΨCF = Pf

[

∑

k

gk φ̃k(zi) φ̃−k(zj)

]

∏

i<j

(zi − zj)
2. (3)

In the remainder of this study we will focus on finite
size systems with N electrons on the spherical geome-
try [13]. In order for Eq. 3 to represent the Moore-
Read phase, we must work at a flux of Nφ = 2N − 3.
The orbitals φk thus correspond to composite fermions
in one quantum of negative effective flux [16], ie., the
(very small) effective magnetic field experienced by CF’s
is directed opposite to the external magnetic field. The
relevant CF orbitals (φ̃k) are given by the projected

monopole harmonics Ỹ
q=− 1

2

n,m studied in Ref. [16]. To
assure [9] that the angular momentum of a pair is
l = −1 (the negative p-wave pairing of the Moore-
Read phase) we must choose gk → (−1)q+mgn and we
are left with only one variational parameter gn per CF
shell. Thus the term in the brackets of Eq. 3 becomes
∑

n,m(−1)m−1/2gnỸ
q=− 1

2

n,m (zi)Ỹ
q=− 1

2

n,−m (zj). The sum over
n goes from n = 0 to n = N − 2 since orbitals with
n ≥ N − 1 are projected to zero. Thus, up to an overall
normalization, there are N − 2 variational parameters.
It is also possible to study other pairing symmetries

within our approach. These would yield states at differ-
ent values of the flux Nφ. Here, we focus on negative
p-wave pairing, which appears most consistent with pre-
vious numerical data [4, 5].
The variational character of the wavefunctions we

study (Eq. 3) implies that we need to optimize over the
set of parameters ~g ≡ (g0, g1, g2, . . . , gN−2) to obtain a
good trial wavefunction. The definition of a “good” wave-
function is somewhat arbitrary, and one may attempt to
optimize various measures of its accuracy, e.g. the energy
of the wavefunction, the overlap with the exact ground-
state, or the error in the pair correlation function com-
pared to the exact groundstate. The chosen measures of
accuracy are evaluated by Monte-Carlo, and the varia-
tional parameters are then optimized.
It is instructive to verify that the Moore-Read state can

be reproduced as a CF-BCS state (Eq. 3). Numerically
we find that for a suitable set of variational parameters,
~g, we are able to achieve overlaps in excess of 0.99 with
the Moore-Read state for systems with up to 20 electrons.
While this may seem a rather complicated reformulation
of the Moore-Read state, we can now perturb the wave-
function with our variational parameters.

Fig. 1 shows overlaps between trial states and the cor-
responding exact groundstates for different interactions
parametrized by the pseudopotential δV1 (with δV1 = 0
being the pure Coulomb interaction in the 1LL, and very
large δV1 roughly corresponding to the interaction of the
LLL). We also show overlaps of the exact groundstate
with the Moore-Read state and the CF liquid (CFL)
(here defined to be Eq. 3 with the occupation coeffi-
cients gn being unity below the chemical potential and
zero above). Results are shown for N = 12, 14, 16. The
dimensions of the L = 0 Hilbert space are respectively
d = 52, 291, 2077. Although we could in principle opti-
mize over as many as N − 2 variational parameters, in
practice we find very good wavefunctions using at most
the first 7 parameters. We remind the reader that the
variational parameters are included (like the u’s and v’s
of BCS theory) to optimize the shape of the pairing wave-
function. Note that the number of parameters used is far
less than the dimension of the L = 0 Hilbert space, so the
good agreement with exact diagonalization is significant.
Further we emphasize that the trial states (Eq. 3) have
very high overlap with the exact groundstate for a wide
range of values of δV1.

For a particular value of δV1 ≈ 0.04 the Moore-Read
state is also a very good trial state. However even at
this value of δV1, our trial states yield an improved rep-
resentation of the exact groundstate. For larger δV1 the
CF-BCS states become even more accurate and can be
continuously deformed into the composite fermion liquid
at large δV1. As shown in Fig. 1 when δV1 gets close to
zero (or negative, not shown) the overlap drops. This
behavior could be expected considering prior work [5]
showing a nearby phase transition, as we discuss below.

As mentioned above, overlaps are not the only possible
measure of the accuracy of a wavefunction. In Fig. 2, we
show how the pair correlation functions h(θ) of different
trial states compare against those of the exact ground-
state. Here θ is the angle between two particles on the
sphere, and we show the mean square error in the correla-
tion function δh2 =

∫

d(cosθ) |h(θ)−hexact(θ)|
2. We note

that if δh2 = 0 for a trial state, then it is identical to the
exact groundstate (this can be seen from the variational
principle, noting that h(θ) fully determines the energy
for a two-body interaction). Fig. 2 once more illustrates
that our trial wavefunctions are extremely accurate – far
more so than either the Moore-Read or CFL trial states.
Again, we find that near δV1 = 0 our trial state fails to
match the exact pair correlation function to some extent.

In Fig. 2, the trial wavefunctions have been reopti-
mized with respect to δh2. The overlaps of these new
wavefunctions with the exact groundstate, would gener-
ally be found to be slightly lower than those in Fig. 1, but
still remain very high (except in the vicinity of δV1 = 0).

Since, as mentioned above, we can continuously de-
form our wavefunctions to have over .99 overlaps with the
Moore-Read state, we conclude that our CF-BCS wave-
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FIG. 1: (color online) Overlaps of trial states with exact
groundstate as a function of the interaction parameter δV1

for N = 12, 14 and 16 electrons. Here, δV1 = 0 corresponds
to the pure Coulomb interaction in the 1LL. The optimized
composite-fermionized BCS wavefunctions (Eq. 3, black cir-
cles) have very high overlap except close to δV1 = 0, where
the system is thought to be close to a phase transition. The
Moore-Read wavefunction (blue squares) is also good near
δV1 = 0.04, but falls off substantially at other values. The
composite fermion liquid wavefunctions (orange diamonds)
are accurate at very high δV1 only. Error bars indicate sta-
tistical errors where a Monte-Carlo algorithm was employed
for the evaluation of the overlaps. The high accuracy of the
BCS wavefunctions over a broad range of interactions shows
the large extent of the weak-pairing phase.

functions are generally in the same so-called weak-pairing
phase as the Moore-Read state. To further emphasize
this point, we note that a wavefunction in a weak-pairing
phase should have the property that g(r) ∼ 1/z at large
distances r [9]. While this is not obvious from the form
of Eq. 3 (particularly considering the complexity of the
projected wavefunctions φ̃) we can nonetheless establish
it is true in several ways. Firstly, we have tried mak-
ing the 1/z tail of the pair correlation function explicit,
writing g(ri−rj) = a/(zi−zj)+f(ri−rj) before projec-
tion, decomposing only the function f into orbitals as in
Eq. 2 and projecting these orbitals. We have found that
this procedure leads to equivalent results. Secondly, the
property g(r) ∼ 1/z at large r implies that the k → 0
orbitals are occupied with probability approaching unity
[9] (which would not be true of a strong pairing phase).
It is easy for us to establish numerically that the lowest
orbitals (n = 0) are indeed fully occupied unity by test-
ing that increasing the value of the variational parameter
g0 does not change the wavefunction.

It is also worth checking that the exact groundstate is
indeed adiabatically connected to the Moore-Read state.
To this end, we analyze the evolution of the energy
gap for a family of Hamiltonians that interpolate be-
tween the three-body contact interactions V3, which yield
the Moore-Read state as its exact groundstate, and a
two-body interaction Hamiltonian H′

C corresponding to
δV1 = 0.04. In particular, for any of the interactions
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FIG. 2: (color online) Squared error δh2 in the pair corre-
lation function of various trial wavefunctions compared with
exact groundstates as a function of the interaction parame-
ter δV1 for N = 12, 14 and 16 electrons. Symbols are as in
Fig. 1. Again we find that composite-fermionized BCS wave-
functions are far more accurate than either Moore-Read or
the CF liquid. Inset: Pair correlation functions h(θ) of the
Moore-Read state and our trial wavefunction along with the
exact groundstate at N = 14 and δV1 = 0.02. Our trial state
is essentially indistinguishable from the exact groundstate,
whereas the Moore-Read state is slightly different.

H(x) = xV3 + (1 − x)H′
C , we find no indication that in

the thermodynamic limit the energy gap closes (data not
shown). We conclude that the exact groundstate of H′

C

is adiabatically connected to the Moore-Read state, con-
firming that the exact groundstate of δV1 = 0.04 is in the
weak pairing phase [9].
The main result of this work is the construction of a

family of accurate wavefunctions in the same topologi-
cal phase as the Moore-Read wavefunction. This can be
thought of as the composite fermionization of a weakly
paired BCS wavefunction. We find that over a broad
range of interactions these wavefunctions are very accu-
rate – far more so than the Moore-Read wavefunction
itself, which should be thought of only as an example of
a wavefunction in a broad phase of matter. Indeed, the
Moore-Read state may be approximated extremely pre-
cisely by the form we propose, and when doing so, the
result does not particularly stand out from other possible
CF-BCS states. Although from a topological standpoint,
it is sufficient to identify the phase of matter, from a prac-
tical standpoint, it is still valuable to have explicit forms
of wavefunctions [10, 11], as this is important for perform-
ing detailed calculations of excitation spectra and other
physical properties. Although we have currently only an-
alyzed the composite fermionization of groundstate BCS
wavefunctions, it is natural to consider a similar proce-
dure for excited states, which we will consider in future
work.
Let us now discuss how our work reflects on and re-

lates to previously results. Prior work on the torus [5]
found a first order phase transition from a charge density
wave (CDW) state to a phase presumed to be the Moore-
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Read phase at roughly the Coulomb point δV1 = 0. This
phase had the required degeneracy of a weak pairing
(Moore-Read) phase, but had relatively low overlaps with
the Moore-Read wavefunction itself. Particle-hole sym-
metrizing the Moore-Read wavefunction increased the
overlap to 97% for N = 10 at one particular value of δV1

but remained somewhat lower at other values. We note
that the Moore-Read phase and its particle-hole conju-
gate are distinct phases [17] and the effect of symmetriza-
tion is unclear and remains a topic of current interest. In
our work on the sphere, there is no possible mixing of
states with their conjugates, although we cannot deter-
mine whether a state or its conjugate would occur in an
experimental system. On the sphere, it was previously
known [4] that the overlap of the exact groundstate with
the Moore-Read state has a peak at δV1 ≈ 0.04, and also
drops strongly near δV1 = 0. However, on the sphere, it
was hard to distinguish the thermodynamic phase since
there is no groundstate degeneracy to use as a guide. Our
work, in contrast, studies only trial wavefunctions in the
Moore-Read phase.
In contrast to all prior work, our trial wavefunctions

have high overlaps over a very broad range of δV1, con-
firming that the weak pairing phase is robust to large
changes in the interaction. Our wavefunctions make a
smooth transition between the Moore-Read phase and
the CF liquid at large δV1. It is difficult to distinguish
numerically if the groundstate of the LLL still has some
amount of pairing. To determine if at large δV1, the puta-
tive CFL still pairs (as previously suggested [5]), a more
careful study of the groundstate for the LLL interactions
would be required. We note in passing that the wide
region of intermediate values of δV1 (between where the
Moore-Read wavefunction is accurate and where the CFL
becomes accurate) which we describe extremely well with
our wavefunctions, could be hard to access with typical
2DEG samples but could likely be realized using hole-
doped samples [18] or graphene [19].
At interactions δV1 < 0.04 our wavefunctions have

substantially better performance than the Moore-Read
wavefunction. However, near δV1 ≈ 0 our wavefunctions
do not perform as well as one might hope. This is not
surprising considering that the groundstate of δV1 = 0
on the torus is a CDW state [5]. However, experiments,
which see a quantum Hall plateau, do not correspond
to the pure Coulomb interaction (δV1 = 0) due to finite
well width effects and Landau-level mixing. It has also
been noted [5] that a more realistic interaction puts the
physical system just slightly on the quantum Hall side of
the transition. Indeed, it is known experimentally [20]
that modifying the electron interaction slightly by tilting
the field pushes the system from a quantum Hall state
into a CDW state. Being that pure Coulomb is thought
to be on the other side of this phase transition, the fact
that our wavefunctions remain so good is perhaps sur-
prising. However, one might argue that since the CDW

is frustrated by the geometry of the sphere we can still
match the groundstate reasonably well with a sufficiently
perturbed weak pairing wavefunction, which remains adi-
abatically connected to the Moore-Read state.

In Ref. [7] it was suggested that the gapped state near
the Coulomb point is best constructed within a com-
posite fermions basis without appeal to the Moore-Read
wavefunction. Our wavefunction is indeed constructed
in terms of composite fermions, retains relatively high
similarity with the exact groundstate, and also remains
adiabatically connected to Moore-Read. We believe this
result should put to rest concerns that the gapped phase
near the Coulomb point is not in the topological phase of
the Moore-Read state or its particle-hole conjugate [17].
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