350 research outputs found

    Microbiology and atmospheric processes: the role of biological particles in cloud physics

    Get PDF
    As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes involving CCN and IN in general and provides a short summary of previous laboratory, field and modelling work which investigated the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC) and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work on the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties

    Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments : A box-model study based on the VBS scheme of the CAMx model (v5.40)

    Get PDF
    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ∼ 7 m³ smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol–chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv_{sv}), which is partitioned based on current published volatility distribution data. By comparing the NTVOC ∕ OMsv_{sv} ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ∼ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10−11^{-11} to 4. 0 × 10−11^{-11} cm³ molec−1^{-1} s−1^{-1}. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol−1^{-1}, which implies a yield increase of 0.03-0.06 % K−1^{-1} with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols

    Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite articles

    Get PDF
    Abstract. In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C &lt; T &lt; −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing. </jats:p

    Na-O Anticorrelation and HB. VI. The chemical composition of the peculiar bulge globular cluster NGC 6388

    Get PDF
    We present the LTE abundance analysis of high resolution spectra for red giant stars in the peculiar bulge globular cluster NGC 6388. Spectra of seven members were taken using the UVES spectrograph at the ESO VLT2 and the multiobject FLAMES facility. We exclude any intrinsic metallicity spread in this cluster: on average, [Fe/H]=-0.44+/-0.01+/-0.03 dex on the scale of the present series of papers, where the first error bar refers to individual star-to-star errors and the second is systematic, relative to the cluster. Elements involved in H-burning at high temperatures show large spreads, exceeding the estimated errors in the analysis. In particular, the pairs Na and O, Al and Mg are anticorrelated and Na and Al are correlated among the giants in NGC 6388, the typical pattern observed in all galactic globular clusters studied so far. Stars in NGC 6388 shows an excess of alpha-process elements, similar to the one found in the twin bulge cluster NGC 6441. Mn is found underabundant in NGC 6388, in agreement with the average abundance ratio shown by clusters of any metallicity. Abundances of neutron-capture elements are homogeneously distributed within NGC 6388; the [Eu/Fe] ratio stands above the value found in field stars of similar metallicity

    A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    Get PDF
    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations

    Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Get PDF
    The ice nucleation activities of five different &lt;i&gt;Pseudomonas syringae&lt;/i&gt;, &lt;i&gt;Pseudomonas viridiflava&lt;/i&gt; and &lt;i&gt;Erwinia herbicola&lt;/i&gt; bacterial species and of Snomaxâ„¢ were investigated in the temperature range between &amp;minus;5 and &amp;minus;15&amp;deg;C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of &amp;minus;5.7&amp;deg;C. At this temperature, about 1% of the Snomaxâ„¢ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn&apos;t induce any detectable immersion freezing in the spray droplets at &amp;minus;5.7&amp;deg;C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about &amp;minus;11&amp;deg;C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between &amp;minus;7 and &amp;minus;11&amp;deg;C with an ice nucleation (IN) active fraction of the order of 10&lt;sup&gt;&amp;minus;4&lt;/sup&gt;. In agreement to previous literature results, the ice nucleation efficiency of Snomaxâ„¢ cells was much larger with an IN active fraction of 0.2 at temperatures around &amp;minus;8&amp;deg;C

    Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?

    Get PDF
    Quantifying the impact of complex organic particles on the formation of ice crystals in clouds remains challenging, mostly due to the vast number of different sources ranging from sea spray to agricultural areas. In particular, there are many open questions regarding the ice nucleation properties of organic particles released from terrestrial sources such as decaying plant material. In this work, we present results from laboratory studies investigating the immersion freezing properties of individual organic compounds commonly found in plant tissue and complex organic aerosol particles from vegetated environments, without specifically investigating the contribution from biological particles, which may contribute to the overall ice nucleation efficiency observed at high temperatures. To characterize the ice nucleation properties of plant-related aerosol samples for temperatures between 242 and 267 K, we used the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber and the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT), which is a droplet freezing assay. Individual plant components (polysaccharides, lignin, soy and rice protein) were mostly less ice active, or similarly ice active, compared to microcrystalline cellulose, which has been suggested by recent studies to be a proxy for quantifying the primary cloud ice formation caused by particles originating from vegetation. In contrast, samples from ambient sources with a complex organic matter composition (agricultural soils and leaf litter) were either similarly ice active or up to 2 orders of magnitude more ice active than cellulose. Of all individual organic plant components, only carnauba wax (i.e., lipids) showed a similarly high ice nucleation activity as that of the samples from vegetated environments over a temperature range between 245 and 252 K. Hence, based on our experimental results, we suggest considering cellulose as being representative for the average ice nucleation activity of plant-derived particles, whereas lignin and plant proteins tend to provide a lower limit. In contrast, complex biogenic particles may exhibit ice nucleation activities which are up to 2 orders of magnitude higher than observed for cellulose, making ambient plant-derived particles a potentially important contributor to the population of ice-nucleating particles in the troposphere, even though major uncertainties regarding their transport to cloud altitude remain

    The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles

    Get PDF
    Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼105^{5} to 1011^{11} m−2^{-2}, respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice-nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds
    • …
    corecore