17 research outputs found

    Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Get PDF
    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. © 2013 Mórocz et al

    DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA

    Get PDF
    Mutations in SPARTAN are associated with early onset hepatocellular carcinoma and progeroid features. A regulatory function of Spartan has been implicated in DNA damage tolerance pathways such as translesion synthesis, but the exact function of the protein remained unclear. Here, we reveal the role of human Spartan in facilitating replication of DNA-protein crosslink-containing DNA. We found that purified Spartan has a DNA-dependent protease activity degrading certain proteins bound to DNA. In concert, Spartan is required for direct DPC removal in vivo; we also show that the protease Spartan facilitates repair of formaldehyde-induced DNA-protein crosslinks in later phases of replication using the bromodeoxyuridin (BrdU) comet assay. Moreover, DNA fibre assay indicates that formaldehyde-induced replication stress dramatically decreases the speed of replication fork movement in Spartan-deficient cells, which accumulate in the G2/M cell cycle phase. Finally, epistasis analysis mapped these Spartan functions to the RAD6-RAD18 DNA damage tolerance pathway. Our results reveal that Spartan facilitates replication of DNA-protein crosslink-containing DNA enzymatically, as a protease, which may explain its role in preventing carcinogenesis and aging

    Role of SUMO modification of human PCNA at stalled replication fork

    Get PDF
    DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18(-/-) cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability

    Opposing Roles of FANCJ and HLTF Protect Forks and Restrain Replication during Stress

    Get PDF
    The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response

    SerpinB10, a Serine Protease Inhibitor, Is Implicated in UV-Induced Cellular Response

    Get PDF
    UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a “quality control protein”, presumably by slowing down the repair process

    Effects of intranasal phototherapy on nasal mucosa in patients with allergic rhinitis.

    No full text
    Rationale: Rhinophototherapy has been shown to be effective in the treatment of allergic rhinitis. Considering that phototherapy with ultraviolet light (UV) induces DNA damage, it is of outstanding importance to evaluate the damage and repair process in human nasal mucosa. Methods: We have investigated eight patients undergoing intranasal phototherapy using a modified Comet assay technique and by staining nasal cytology samples for cyclobutane pyrimidine dimers (CPDs), which are UV specific photoproducts. Results: Immediately after last treatment Comet assay of nasal cytology samples showed a significant increase in DNA damage compared to baseline. Ten days after the last irradiation a significant decrease in DNA damage was observed compared to data obtained immediately after finishing the treatment protocol. Difference between baseline and 10 days after last treatment was not statistically significant. Two months after ending therapy, DNA damage detected by Comet assay in patients treated with intranasal phototherapy was similar with that of healthy individuals. None of the samples collected before starting intranasal phototherapy stained positive for CPDs. In all samples collected immediately after last treatment strong positive staining for CPDs was detected. The number of positive cells significantly decreased 10 days after last treatment, but residual positive staining was present in all the examined samples. This finding is consistent with data reported in skin samples after UV irradiation. Cytology samples examined two months after ending therapy contained no CPD positive cells. Conclusion: Our results suggest that UV damage induced by intranasal phototherapy is efficiently repaired in nasal mucosa

    Alkaline BrdU comet PRR assay images of untreated and UV-irradiated HeLa cells representing the progression of replication as detailed in Figure 1.

    No full text
    <p>The cells were pulse labelled with BrdU before irradiation with 20 J/m<sup>2</sup> UV-C or mock treatment. After the indicated time (0–6 h) single-stranded DNA fragments were separated from matured DNA by alkaline single cell electrophoresis followed by immunostaining using fluorescent anti-BrdU antibody (green) or staining with ethidium-bromide (red). The much higher sensitivity of the BrdU comet assay as compared to the basic comet assay was demonstrated by showing the anti-BrdU stained and ethidium bromide counterstained images of the same cells.</p

    Alkaline BrdU comet PRR images of HCT116(RAD18<sup>−/−</sup>) cells after UV irradiation.

    No full text
    <p>(<b>A</b>) UV irradiated (20 J/m<sup>2</sup>) cells were allowed to recover for 6 hour. Representative images of UV treated cells display highly discontinuous, fragmented tails. The modified BrdU comet assay allowed proper differentiation between comet head and tail, which is essential for precise quantitation. Following the BrdU comet assay, the incorporated BrdU was identified by anti-BrdU primary antibody and cells were detected using Alexa Fluor 488 conjugated secondary antibody (green, panel I). Ethidium bromide counterstaining of the same cells (red, panel II) and merged images (yellow, panel III) are shown. (<b>B</b>) BrdU immunostaining detects S-phase cells without synchronisation. HCT116(RAD18<sup>−/−</sup>) cell were UV irradiated (40 J/m<sup>2</sup>) and allowed to recover for 6 hour. Staining was carried out as described in (A). Arrows indicate the non-S-phase cells which has not been stained with anti-BrdU antibody but only with ethidium bromide.</p
    corecore