6 research outputs found

    Subphenotypes in patients with acute respiratory distress syndrome treated with high-flow oxygen

    No full text
    Background: Acute respiratory distress syndrome (ARDS) subphenotypes differ in outcomes and treatment responses. Subphenotypes in high-flow nasal oxygen (HFNO)-treated ARDS patients have not been investigated. Objectives: To identify biological subphenotypes in HFNO-treated ARDS patients. Methods: Secondary analysis of a prospective multicenter observational study including ARDS patients supported with HFNO. Plasma inflammation markers (interleukin [IL]-6, IL-8, and IL-33 and soluble suppression of tumorigenicity-2 [sST2]) and lung epithelial (receptor for advanced glycation end products [RAGE] and surfactant protein D [SP-D]) and endothelial (angiopoietin-2 [Ang-2]) injury were measured. These biomarkers and bicarbonate were used in K-means cluster analysis to identify subphenotypes. Logistic regression was performed on biomarker combinations to predict clustering. We chose the model with the best AUROC and the lowest number of variables. This model was used to describe the HAIS (High-flow ARDS Inflammatory Subphenotype) score. Results: Among 41 HFNO patients, two subphenotypes were identified. Hyperinflammatory subphenotype (n = 17) showed higher biomarker levels than hypoinflammatory (n = 24). Despite similar baseline characteristics, the hyperinflammatory subphenotype had higher 60-day mortality (47 vs 8.3% p = 0.014) and longer ICU length of stay (22.0 days [18.0-30.0] vs 39.5 [25.5-60.0], p = 0.034). The HAIS score, based on IL-8 and sST2, accurately distinguished subphenotypes (AUROC 0.96 [95%CI: 0.90-1.00]). A HAIS score ≥ 7.45 was predictor of hyperinflammatory subphenotype. Conclusion: ARDS patients treated with HFNO exhibit two biological subphenotypes that have similar clinical characteristics, but hyperinflammatory patients have worse outcomes. The HAIS score may identify patients with hyperinflammatory subphenotype and might be used for enrichment strategies in future clinical trials

    The prognostic value of muscle regional oxygen saturation index in severe community-acquired pneumonia: a prospective observational study.

    No full text
    BACKGROUND: Community-acquired pneumonia (CAP) mortality exceeds 20 % in critical care patients despite appropriate antibiotic therapy. Regional tissue oxygen saturation index (rSO2) measured with near-infrared spectroscopy (NIRS) might facilitate early detection for patients at risk of serious complications. Our objectives were to determine the relationship between early determination of rSO2 and mortality and to compare discrimination power for mortality of rSO2 and other resuscitation variables in critically ill CAP patients. METHODS: This is a prospective observational study. Patients with CAP were enrolled within 6 h to intensive care admission. Demographics and clinical variables were recorded. rSO2 was determined using NIRS in brachioradialis muscle. All variables were determined at baseline and 24 h after admission. RESULTS: Forty patients were enrolled. Fourteen patients (35 %) had a baseline rSO2 < 60 % and 7 of them died (50 %). Only 1 of 26 (3.8 %) patients with rSO2 ≥ 60 % died (p = 0.007). The area under ROC curve (AUROC) showed consistent mortality discrimination at baseline (0.84, p = 0.03) and at 24 h (0.86, p = 0.006) for rSO2 values. Cox regression analysis showed that "low" rSO2 at ICU admission (hazard ratio (HR) = 8.99; 95 % confidence interval (CI) 1.05-76.8; p = 0.045) and "low" rSO2 at 24 h (HR = 13.18; 95 % CI 1.52-113.6; p = 0.019) were variables independently associated with mortality. In contrast, other variables such as Acute Physiology and Chronic Health Evaluation (APACHE II) score (HR = 1.09; 95 % CI 0.99-1.19; p = 0.052) were not associated with mortality. CONCLUSIONS: Our findings suggest that forearm skeletal muscle rSO2 differs in patients with severe CAP according to outcome and might be an early prognosis tool.This study was partially supported by grants from the Fondo de Investigación Sanitaria (FIS PI10/01538, PI13/02011) and SGR2013/092

    Timing of intubation and ICU mortality in COVID-19 patients: a retrospective analysis of 4198 critically ill patients during the first and second waves

    No full text
    Abstract Background The optimal time to intubate patients with SARS-CoV-2 pneumonia has not been adequately determined. While the use of non-invasive respiratory support before invasive mechanical ventilation might cause patient-self-induced lung injury and worsen the prognosis, non-invasive ventilation (NIV) is frequently used to avoid intubation of patients with acute respiratory failure (ARF). We hypothesized that delayed intubation is associated with a high risk of mortality in COVID-19 patients. Methods This is a secondary analysis of prospectively collected data from adult patients with ARF due to COVID-19 admitted to 73 intensive care units (ICUs) between February 2020 and March 2021. Intubation was classified according to the timing of intubation. To assess the relationship between early versus late intubation and mortality, we excluded patients with ICU length of stay (LOS) < 7 days to avoid the immortal time bias and we did a propensity score and a cox regression analysis. Results We included 4,198 patients [median age, 63 (54‒71) years; 71% male; median SOFA (Sequential Organ Failure Assessment) score, 4 (3‒7); median APACHE (Acute Physiology and Chronic Health Evaluation) score, 13 (10‒18)], and median PaO2/FiO2 (arterial oxygen pressure/ inspired oxygen fraction), 131 (100‒190)]; intubation was considered very early in 2024 (48%) patients, early in 928 (22%), and late in 441 (10%). ICU mortality was 30% and median ICU stay was 14 (7‒28) days. Mortality was higher in the “late group” than in the “early group” (37 vs. 32%, p < 0.05). The implementation of an early intubation approach was found to be an independent protective risk factor for mortality (HR 0.6; 95%CI 0.5‒0.7). Conclusions Early intubation within the first 24 h of ICU admission in patients with COVID-19 pneumonia was found to be an independent protective risk factor of mortality. Trial registration The study was registered at Clinical-Trials.gov (NCT04948242) (01/07/2021)

    Risk factors for noninvasive ventilation failure in critically Ill subjects with confirmed influenza infection

    No full text
    BACKGROUND: Despite wide use of noninvasive ventilation (NIV) in several clinical settings, the beneficial effects of NIV in patients with hypoxemic acute respiratory failure (ARF) due to influenza infection remain controversial. The aim of this study was to identify the profile of patients with risk factors for NIV failure using chi-square automatic interaction detection (CHAID) analysis and to determine whether NIV failure is associated with ICU mortality. METHODS: This work was a secondary analysis from prospective and observational multi-center analysis in critically ill subjects admitted to the ICU with ARF due to influenza infection requiring mechanical ventilation. Three groups of subjects were compared: (1) subjects who received NIV immediately after ICU admission for ARF and then failed (NIV failure group); (2) subjects who received NIV immediately after ICU admission for ARF and then succeeded (NIV success group); and (3) subjects who received invasive mechanical ventilation immediately after ICU admission for ARF (invasive mechanical ventilation group). Profiles of subjects with risk factors for NIV failure were obtained using CHAID analysis. RESULTS: Of 1,898 subjects, 806 underwent NIV, and 56.8% of them failed. Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, infiltrates in chest radiograph, and ICU mortality (38.4% vs 6.3%) were higher (P < .001) in the NIV failure than in the NIV success group. SOFA score was the variable most associated with NIV failure, and 2 cutoffs were determined. Subjects with SOFA ≥ 5 had a higher risk of NIV failure (odds ratio = 3.3, 95% CI 2.4-4.5). ICU mortality was higher in subjects with NIV failure (38.4%) compared with invasive mechanical ventilation subjects (31.3%, P = .018), and NIV failure was associated with increased ICU mortality (odds ratio = 11.4, 95% CI 6.5-20.1). CONCLUSIONS: An automatic and non-subjective algorithm based on CHAID decision-tree analysis can help to define the profile of patients with different risks of NIV failure, which might be a promising tool to assist in clinical decision making to avoid the possible complications associated with NIV failure

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0-4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2-6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society
    corecore