83 research outputs found

    Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves

    Full text link
    NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Supercritical Fluids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Supercritical Fluids, 55 (2011). http://dx.doi.org/10.1016/j.supflu.2010.09.030Rosmarinus officinalis (rosemary) extracts were obtained in a supercritical pilot-scale plant. Based on experimental information available in the literature for analytical or low-scale processes, extraction temperature and pressure were selected to be 313 K and 30 MPa. At these extraction conditions, the kinetic behavior of the pilot-scale overall extraction curve were determined with respect to yield, antioxidant activity and carnosic acid content. The overall extraction curve was represented using Sovova’s model; the average deviation between measured and calculated yields was lower than 2%. Mass transfer coefficients in the fluid and solid phases were determined and were compared with previous data reported in the literature for low-scale rosemary supercritical extraction. A two-stage depressurization procedure was accomplished and the effect of both on-line fractionation and extraction time on the antioxidant activity of the samples collected was studied. The antioxidant activity of the different fractions could be straight correlated with the carnosic acid content with a regression coefficient of 0.92This work has been financed by Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (ALIBIRD-S2009/AGR-1469) and project FUN-C-FOOD, CSD2007-00063 (CONSOLIDER-INGENIO) from Ministerio de Ciencia e Innovación, Spain

    Isolation of essential oil from different plants and herbs by supercritical fluid extraction

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal of Chromatography A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Chromatography A, 1250 (2012) DOI: 10.1016/j.chroma.2012.04.051Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO2 is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid–solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO2 or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed.This work has been supported by project AGL2010-21565 (subprogram ALI) and project INNSAMED IPT-300000-2010-34 (subprogram INNPACTO) from Ministerio de Ciencia e Innovación (Spain) and Comunidad Autónoma de Madrid (project ALIBIRDS2009/ AGR-1469)

    Preparation and characterization of licorice‐chitosan coatings for postharvest treatment of fresh strawberries

    Full text link
    Several plant extracts are being investigated to produce edible coatings, mainly due to their antioxidant and antimicrobial activities. In this study, licorice root extracts were produced by ultrasound‐assisted extraction and were combined with chitosan to elaborate edible coatings. Different solvents and temperatures were used in the extraction process, and the antioxidant and antimicrobial activity of the extracts were assessed. The most bioactive extracts were selected for the development of the edible coatings. The rheological properties of the coatings were studied, and they were applied on strawberry to evaluate their physicochemical and microbiological properties. The addition of licorice extract to chitosan resulted in positive effects on the rheological properties of the coatings: the incorporation of phytochemicals to chitosan decreased the shear stress and improved the restructuring ability of the coating solutions. The films presented a reduction of the Burger model parameter, indicating a reduction of rigidity. Furthermore, the strawberry coated with chitosan and licorice extract maintained good quality parameters during storage and showed the best microbiological preservation in comparison with controls. Hence, the use of chitosan with licorice extract is a potential strategy to produce edible coating for improving the postharvest quality of fruitsThis research was funded by Comunidad Autónoma de Madrid, grant number P2013/ABI27, project Bolívar Gana con Ciencia, MinCiencias Contract 368-2019 and Programa Nacional de Innovación Agraria—PNIA of Perú, Contract: No. 152-2018-INIA-PNIA-PASANTI

    Supercritical antisolvent particle precipitation and fractionation of rosemary (Rosmarinus officinalis L.) extracts

    Full text link
    The simultaneous fractionation and precipitation of an ethanolic extract of rosemary (Rosmarinus officinalis L.) using supercritical carbon dioxide anti-solvent technique was studied, with the target of separate in two different fractions the key antioxidants of rosemary (i.e. rosmarinic acid, carnosic acid and carnosol). The effect of pressure and temperature on the fractionation process was investigated, together with the morphology and particle size distribution of the precipitates. Additionally, the chemical composition of the oleoresins were analyzed and reported. In the range of pressures (9-20 MPa) and temperatures (313-333 K) used in this work, the precipitates presented a 2-3 fold enrichment of rosmarinic acid, while carnosic acid and carnosol were concentrated (2-3 fold enrichment) in the oleoresin fractions. Furthermore, in general, oleoresins presented higher antioxidant activity than precipitates. Particles produced with a nozzle of diameter 101.6 μm were smaller and more spherical with increasing pressure (mean value 4-10 μm at 20 MPa) and decreasing temperatureThe authors gratefully acknowledge the financial support from Ministerio de Economía y Competitividad of Spain (Proyect AGL2016- 76736-C3-1-R). Somaris E. Quintana is grateful for the funding provided by Gobernación de Bolivar and Fundación Ceiba, Colombia, in the project “Bolívar Gana con Cienci

    Fractionation and precipitation of licorice (Glycyrrhiza glabra L.) phytochemicals by supercritical antisolvent (SAS) technique

    Full text link
    Supercritical anti-solvent precipitation (SAS) using carbon dioxide is a novel technique that can be used to produce powdered ingredients in small size particles, facilitating their incorporation into food matrices. In this work, the SAS precipitation of a licorice root ethanolic extract was studied. SAS assays were carried out at 15–20 MPa, 308.15 and 313.15 K, and two different concentrations (9.6 and 14.2 mg/ml) of the ethanolic licorice extract. In the range of conditions investigated, SAS pressure and temperature did not affect significantly the precipitation yield, but phytochemicals recovery was higher with the lower licorice extract concentration. Moreover, the fractionation of licorice bioactives (liquiritin, liquiritigenin, isoliquiritigenin, glabridin and glycyrrhizic acid) was assessed, together with the content of total phenolic compounds and antioxidant activity of the powders and oleoresin by-products obtained. In this respect, precipitates and oleoresins presented significant differences in the concentration of some licorice bioactives, and higher antioxidant activity was observed in precipitates. Additionally, significant effect of pressure, temperature and licorice extract concentration on the morphology and particle size of precipitates was observed, recovering smaller and more regular particles at 15–20 MPa, 313.15 K and 9.6 mg/ml licorice extract concentration, attaining satisfactory yield and antioxidant activityThe authors gratefully acknowledge the financial support from Ministerio de Economía y Competitividad of Spain (Projects AGL2017-89055-R and AGL2016-76736-C3-1-R). Somaris E. Quintana is grateful for the funding provided by Gobernación de Bolivar and Fundación Ceiba, Colombia, in the project “Bolívar Gana con Ciencia

    Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin

    Full text link
    This Accepted Manuscript is available for reuse under a CC BY-NC-ND licence after the 12 month embargo periodThe efficient production of saponin-rich extracts is of increasing interest due to the bioactive properties that have being demonstrated for these compounds. However, saponins have a poor bioavailability. In this respect, the knowledge about the bioaccessibility of saponins as a first step before bioavailability has been scarcely explored. In this study, the production of ultrasound-assisted extracts of saponins from edible seeds (quinoa, soybean, red lentil, fenugreek and lupin) was carried out with ethanol, ethanol:water or water. Extraction yield, total saponin (TSC), fat and total phenolics content (TPC) were determined. Then, the bioaccessibility of saponins after the in vitro gastrointestinal digestion of the extracts was determined and the effect of TPC and fat in the extracts on bioaccessibility was evaluated. The highest saponin-rich extracts were obtained by ethanol, being fenugreek and red lentil the richest extracts (12% and 10%, respectively). Saponins from ethanol:water extracts displayed variable bioaccessibility (from 13% for fenugreek to 83% for lentil), but a bioaccessibility closer to 100% was reached for all ethanol extracts. Correlation studies showed that TPC of the extracts negatively affected the bioaccessibility of saponins, whereas fat of the extracts enhanced this parameter. As summary, ultrasound-assisted extraction is shown as an efficient method for obtaining saponin-rich extracts from edible seeds, being ethanol the most advantageous solvent due to the richness of saponins and the successful bioaccessibility from these extracts, likely caused by the co-extracted fat with ethanol. Regardless of the extracts, phenolic compounds or fat may hinder or enhance the bioaccessibility of saponins, respectively. Additionally, an adequate balance between saponins to lipids has shown to be relevant on such an effectThis work was supported by the Ministerio de Economía y Competitividad, Spain (AGL2016-76736-C3-1-R) and the Community ofMadrid, Spain (ALIBIRD-CM S2013/ABI-2728). Joaquín Navarro del Hierro thanks the Ministerio de Educación, Cultura y Deporte forfunding his research with a FPU predoctoral contract (FPU 15/04236).Teresa Herrera thanks the Community of Madrid for her contract (Fondo Social Europeo, Programa Operativo de Empleo Juvenil eIniciativa de Empleo Juvenil YEI

    Simultaneous supercritical fluid extraction of heather (Calluna vulgaris L.) and marigold (Calendula officinalis L.) and anti-inflammatory activity of the extracts

    Full text link
    Heather (Calluna vulgaris L.) and marigold (Calendula officinalis L.) are two rich sources of bioactive pentacyclic triterpenes. The supercritical carbon dioxide (SCCO2) extraction of these two plants was explored at a pressure range of 25–50 MPa, 50 ºC, with or without fractionation, different extraction times (1.5–4.0 h) and using ethanol as a co-solvent (0 and 10% w/w). In order to determine potential synergisms, a combined extraction (heather + marigold 50:50) was also studied. In general, higher extraction yields were achieved when the co-solvent was added. Higher concentrations of total triterpenic acids were obtained in heather extracts, specially using ethanol. The co-solvent did not increase the terpene concentration in marigold extracts. For the combined extraction, an antagonist effect in the triterpene concentration was observed in absence of a co-solvent, whereas a synergistic effect was exhibited in its presence, especially for ursolic acid. In general, the extracts showed a certain anti-inflammatory effect, although a straight correlation with the analyzed triterpenic acids concentration was not exhibited. Moreover, the combined extraction exposed a similar anti-inflammatory activity in comparison with the individual plant extractsThe authors gratefully acknowledge the financial support from Ministerio de Economía y Competitividad of Spain (project AGL2013-48943-C2) and the Comunidad Autónoma de Madrid (ALIBIRD, project number S2013/ABI-2728

    Antioxidant and antimicrobial assessment of licorice supercritical extracts

    Full text link
    Licorice (Glycyrrhiza glabra L.) is a plant used widely in herbal medicines due to their several biological potentials. The supercritical extraction of licorice roots was investigated to assess the antioxidant and antimicrobial activity of the extracts. Extraction conditions were pressures from 15 to 40 MPa, 313.15 and 333.15 K, and ethanol cosolvent in the range of 0 to 20% mass. In the case of high-pressure extractions using pure carbon dioxide (CO2) fractionation of the supercritical extract was accomplished in a two-cell decompression system. Fractionation was carried out with the aim to examine the potential separation of the antioxidant and antimicrobial licorice compounds and thus increase the bioactive properties of the fractions obtained in each separation cell. Main licorice bioactive compounds, liquiritin, liquiritigenin, glycyrrhizin, isoliquiritigenin and glabridin, were identified by HPLC and quantified using standards. Extracts obtained with supercritical CO2 and ethanol cosolvent contain the higher amounts of phenolic compounds and also the higher antioxidant activity but exhibit low or even no antimicrobial activity. Using pure CO2 at high pressure coupled with the on-line fractionation of the extract, two samples were obtained which showed, respectively, lower phenolic compounds content and good antimicrobial capacity (first fraction) and higher phenolic compounds content and antioxidant capacity (second fraction). Thus, the advantages of supercritical on-line fractionation are demonstrated in the extraction of Licorice rootsThe authors gratefully acknowledge the financial support from Ministerio de Economía y Competitividad of Spain (Projects AGL2016-76736-C3-1-R and AGL2015-64522-C2-R

    The interaction of slaughtering, drying, and defatting methods differently affects oxidative quality of the fat from black soldier fly (Hermetia illucens) larvae

    Full text link
    The interrelation effect of slaughtering, drying, and defatting methods of BSFL on the oxidative quality of the derived fat was studied. Blanching and freezing were compared as slaughtering methods, followed by oven or freeze-drying for drying and mechanical pressing or SFE for defatting. The oxidative state and stability of the extracted fat and defatted meals were monitored immediately after their production, using peroxide value (PV) and Rancimat test, and over 24 weeks of storage. Slaughtering and drying methods had an independent effect on PV, with freezing and freeze-drying being the best methods. Mechanical pressing and SFE were comparable and superior to conventional hexane defatting. Interactions were observed between slaughtering and defatting, drying and defatting, and between all three factors. Generally, freeze-drying combined with any of the slaughtering and defatting methods resulted in the lowest PVs, with mechanical pressing being preferred. Freeze-drying plus mechanical pressing also produced the most stable fats during storage according to the evolution of PV, while the combination of blanching and SFE produced the least stable. A significant correlation was found between the PV at 24 weeks and the antioxidant activity of the fats. Contrary to storage assays, in accelerated Rancimat assays, freeze-dried samples were the least stable, which was partially attributed to the significant correlation with the acid values of the samples. Defatted meals followed a similar pattern to the extracted fat, except for worse oxidation for SFE defatting. Therefore, the different processing methods of slaughtering, drying, and defatting of BSFL differently affect lipid oxidation, with interactions between such successive stepsThis research was funded by the Spanish National Plans of Aquaculture of the Ministry of Agriculture, Fisheries and Food, project ACUINSECT (Optimization of insect flours as sustainable ingredient for aquaculture fee

    Simulador gastrointestinal dinámico (simgi®): Una herramienta potencialmente útil en nutrición clínica

    Full text link
    The human gastrointestinal tract harbours the most complex and abundant community of the human body, the colon being where the highest microbial concentration is found (10 12 cell/g). The intestinal microbiota exerts metabolic, trophic and protective functions which are important in the maintenance of the host health. Over recent decades, numerous studies have attempted to provide scientific evidence about the environmental factors that can impact on human health through the modulation of the intestinal microbiota composition. However, this approach is changing, and a new focus on assessing changes at functional level is being developed. If we apply this dual approach to the role played by the diet, it is obvious the need of dynamic gastrointestinal simulation models such as simgi®, that allow to evaluate the transformations undergone by food and/or food ingredients during their transit through the gastrointestinal tract, as well as to determine potential changes in the composition and functionality of the intestinal microbiota after food ingestion. So far the studies using the simgi® have confirmed its potential applications in the area of food as a prior step to its application in clinical nutrition to prevent and/or treat diseases associated with intestinal dysbiosis and metabolic disorders. Likewise, this review includes feasible perspectives of the use of simgi® in clinical research concerning to diseases related to the intestinal microbiota.Dentro de la microbiota humana, el tracto gastrointestinal alberga el ecosistema más complejo y abundante del cuerpo humano, siendo el colon donde se encuentra la concentración más alta de microorganismos (1012 cel/g). La microbiota intestinal desempeñaa funciones metabólicas, tróficas y de protección que son de gran importancia para el hospedador. Durante las últimas décadas, son numerosos los estudios que han tratado de aportar evidencias científicas acerca de los factores que, a través de cambios en la composición de la microbiota intestinal, influyen en la salud humana. Sin embargo, esta aproximación está cambiando, y son cada vez más los expertos que apuestan por evaluar cambios a nivel de funcionalidad de la microbiota. Si aplicamos este enfoque dual al papel desempeñado por la dieta, resulta obvia la necesidad de disponer de modelos dinámicos de simulación gastrointestinal, como es el simgiR, que permitan evaluar las transformaciones que sufren los alimentos y/o ingredientes alimentarios durante el tránsito por el tracto gastrointestinal, así como para determinar los posibles cambios en la composición y funcionalidad de la microbiota intestinal derivados de la ingesta de alimentos. Los estudios llevados a cabo hasta el momento con el simgiR constatan sus potenciales aplicaciones en el área de los alimentos como paso previo a su aplicación en nutrición clínica, para prevenir y/o tratar enfermedades asociadas a disbiosis intestinal, así como trastornos metabólicos. Asimismo, esta revisión recoge posibles perspectivas de utilización del simgiR en la investigación clínica relativa a enfermedades vinculadas con disfunciones de la microbiota intestinalEste trabajo ha sido realizado gracias a la financiación del MINECO (proyecto AGL2015- 64522-C2-R) y la Comunidad de Madrid (Programa ALIBIRD-CM S2013/ABI-2728-CM). Alba Tamargo es beneficiaria de un contrato en el Programa de Garantía Juvenil-CSIC financiado gracias al Fondo Social Europeo. Irene Gil Sánchez es beneficiaria de una beca FPU del MECD (FPU14/0576
    corecore