15 research outputs found

    Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor

    Get PDF
    The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa x deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants

    Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions

    Get PDF
    17 páginas.-- 6 figuras.-- 5 tablas.-- 89 referencias.-- Additional Supporting Information may be found in the online version of this article at the publisher’s web-siteThe adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi-arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lp) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lp, indicating how the interaction of different aquaporins may render diverse Lp values.The study was supported by the Ministry of Economy and Competitiveness of Spain (Juan de la Cierva Program) and Junta de Andalucía (P10-CVI-5920 project) for research funding.Peer reviewedPeer Reviewe

    Functions of nitric oxide-mediated post-translational modifications under abiotic stress

    Get PDF
    Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies

    Role of adventitious roots in water relations of tamarack (<it>Larix laricina</it>) seedlings exposed to flooding

    No full text
    Abstract Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions.</p

    Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor

    No full text
    The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa × deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants.This work was supported by the Ministry of Economy and Competitiveness of Spain (Juan de la Cierva Program and AGL2011-25403 project) and Junta de Andalucía (P10-CVI-5920 project). We would like to thank Sonia Molina Arias for her help in extraction and analysis of the aquaporins of L. bicolor, and Dr Sabine Zimmerman for editing and correction of the manuscript

    Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions

    No full text
    Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B. thuringiensis, a consortium of AM fungi or a combination of both microorganisms. Plants were cultivated under well-watered conditions or subjected to drought stress. Several physiological parameters were measured, including among others, plant growth, photosynthetic efficiency, nutrients content, oxidative damage to lipids, accumulation of proline and antioxidant compounds, root hydraulic conductivity and the expression of plant aquaporin genes. Under drought conditions, the inoculation of Bt increased significantly the accumulation of nutrients. The combined inoculation of both microorganisms decreased the oxidative damage to lipids and accumulation of proline induced by drought. Several maize aquaporins able to transport water, CO2 and other compounds were regulated by the microbial inoculants. The impact of these microorganisms on plant drought tolerance was complementary, since Bt increased mainly plant nutrition and AM fungi were more active improving stress tolerance/homeostatic mechanisms, including regulation of plant aquaporins with several putative physiological functions. Thus, the use of autochthonous beneficial microorganisms from a degraded Mediterranean area is useful to protect not only native plants against drought, but also an agronomically important plant such as maize.E. Armada was financed by Ministerio de Economía y Competitividad (Spain) (BES-2010-042736). This work was carried out in the framework of the project reference AGL2012-39057-C02.Peer reviewe

    Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor

    No full text
    The relatively better performance of mycorrhizal plants subjected to drought stress has commonly been linked to improved root water uptake through the fungal regulation of plant aquaporins and hormones. In this study, we examined the role of ectomycorrhizal fungi in plant water relations and plant hormonal balance under mild drought using split-root seedlings of Populus trichocarpa x deltoides either with or without inoculation with Laccaria bicolor. The root compartments where the drought treatment was applied had higher ABA and lower cytokinin tZR contents, and greater expression of the plant aquaporins PtPIP1;1, PtPIP1;2, PtPIP2;5, and PtPIP2;7. On the other hand, the presence of L. bicolor within the roots down-regulated PtPIP1;4, PtPIP2;3, and PtPIP2;10, and reduced the abundance of PIP2 proteins. In addition, expression of the fungal aquaporins JQ585595 and JQ585596 were positively correlated with root ABA content, while tZR content was positively correlated with PtPIP1;4 and negatively correlated with PtPIP2;7. The results demonstrate a coordinated plant-fungal system that regulates the different mechanisms involved in water uptake in ectomycorrhizal poplar plants

    El índice de área foliar (LAI) en masas de abedul (Betula celtibérica Rothm. et Vasc.) en Galicia

    No full text
    El índice de área foliar (LAI) es un parámetro escasamente estudiado en las masas forestales españolas. En masas naturales y repoblaciones de abedul (Betula celtiberica Rothm. et Vasc.) de un amplio rango de edades, densidades y estaciones, localizados en Galicia se ha medido el LAI con un analizador de dosel arbóreo Li-Cor LAI 2000. Los resultados obtenidos muestran valores entre 0,5 y 4,7, con un valor medio de 2,6, siendo éste equiparable al de otras especies de abedul en Europa y América. No se han detectado correlaciones significativas del LAI con los parámetros de masa (densidad, diámetro, área basimétrica, calidad de estación, biomasa o regeneración), aunque sí se ha encontrado que los mayores valores de LAI se corresponden con un área basimétrica mayor y una menor regeneración. Se ha observado una correlación mayor con los tipos de masa (monte alto y monte bajo). La gestión selvícola y el carácter intolerante del abedul pueden explicar las bajas correlaciones observadas

    Involvement of arbuscular mycorrhizal community in the response of olive trees to drought

    No full text
    Comunicación oral presentada en The 2nd World Congress on the use of Biostimulants in Agriculture, Florence, Italy 16-19 de Noviembre de 2015 P140 (A160) Involvement.... organizado por New Ag International SARLOleae europea L. is known for its resistance to long-dry periods. One of the first responses of plants to the lack of water within the soil profile will be to adjust their internal water balance by closing the stomata and by adjusting their root hydraulic conductance (Lpr), mainly through the action of aquaporins. Also, the presence of mycorrhizal fungi associate with the tree roots will affect their respond to drought. Arbuscular mycorrhizal (AM) fungi are believed to be able to have a great capacity to resist fast environmental changes under drought conditions, allowing the plants they associate to have a wider range of possibilities to adapt and survive. The present study aims to: 1) describe the different non-described aquaporins present in O. europaea, and 2) to study how different AM communities regulate the response of O. europaea trees to drought in relation to water relations and aquaporine regulation activity. The presence of a more diverse mycorrhizal population in the Grazalema soil induces taller seedlings when growth under well-watered conditions. However, when drought was applied, these differences disappear, and the presence of a fungus for the genera Dominika from the Freila soil become crucial to have more drought-resistant seedlings; with higher Lpr values, higher TIP aquaporin expression, and a higher phosphorylation state of PIP2 aquaporins. We conclude that a combined response to soil structure and mycorrhizal population was the responsible of the responses of O. europaea to drought stress.Peer reviewe

    Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants

    No full text
    Main conclusion: The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp to environmental changes.This work was supported by the Ministry of Economy and Competitiveness of Spain (Juan de la Cierva Program and AGL2011-25403 project) and Junta de Andalucía (P10-CVI-5920 project)Peer Reviewe
    corecore