19 research outputs found

    A tool to improve pre-selection for deep brain stimulation in patients with Parkinson’s disease

    Get PDF
    Determining the eligibility of patients with Parkinson’s disease (PD) for deep brain stimulation (DBS) can be challenging for general (non-specialised) neurologists. We evaluated the use of an online screening tool (Stimulus) that aims to support appropriate referral to a specialised centre for the further evaluation of DBS. Implementation of the tool took place via an ongoing European multicentre educational programme, currently completed in 15 DBS centres with 208 referring neurologists. Use of the tool in daily practice was monitored via an online data capture programme. Selection decisions of patients referred with the assistance of the Stimulus tool were compared to those of patients outside the screening programme. Three years after the start of the programme, 3,128 patient profiles had been entered. The intention for referral was made for 802 patients and referral intentions were largely in accordance with the tool recommendations. Follow-up at 6 months showed that actual referral took place in only 28%, predominantly due to patients’ reluctance to undergo brain surgery. In patients screened with the tool and referred to a DBS centre, the acceptance rate was 77%, significantly higher than that of the unscreened population (48%). The tool showed a sensitivity of 99% and a specificity of 12% with a positive and negative predictive value of 79 and 75%, respectively. The Stimulus tool is useful in assisting general neurologists to identify appropriate candidates for DBS consideration. The principal reason for not referring potentially eligible patients is their reluctance to undergo brain surgery

    Mutational spectrum of GNAL, THAP1 and TOR1A genes in isolated dystonia: study in a population from Spain and systematic literature review

    Get PDF
    [Objective] We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature.[Methods] A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed.[Results] Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively.[Conclusions] There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.This work was supported by the Carlos III Health Institute-European Regional Development Fund (ISCIII-FEDER) [PI14/01823, PI16/01575, PI18/01898, PI19/01576], the Andalusian Regional Ministry of Economics, Innovation, Science and Employment [CVI-02526, CTS-7685], the Andalusian Regional Ministry of Health and Welfare [PI-0741-2010, PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019], and the Alicia Koplowitz and Mutua Madrileña Foundations. Pilar GĂłmez-Garre was supported by the "Miguel Servet" program [MSII14/00018] (from ISCIII-FEDER) and “NicolĂĄs Monardes” program [C-0048-2017] (from the Andalusian Regional Ministry of Health). Silvia JesĂșs was supported by the "Juan RodĂ©s" program [B-0007-2019] and Daniel MacĂ­as-GarcĂ­a by the “RĂ­o Hortega” program [CM18/00142] (both from ISCIII-FEDER). MarĂ­a Teresa Periñån was supported by the Spanish Ministry of Education [FPU16/05061]. Cristina Tejera was supported by VPPI-US from the University of Seville.Peer reviewe

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Multidimensional Circadian Monitoring by Wearable Biosensors in Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is associated with several non-motor symptoms that may precede the diagnosis and constitute a major source of frailty in this population. The digital era in health care has open up new prospects to move forward from the qualitative and subjective scoring for PD with the use of new wearable biosensors that enable frequent quantitative, reliable, repeatable, and multidimensional measurements to be made with minimal discomfort and inconvenience for patients. A cross-sectional study was conducted to test a wrist-worn device combined with machine-learning processing to detect circadian rhythms of sleep, motor, and autonomic disruption, which can be suitable for the objective and non-invasive evaluation of PD patients. Wrist skin temperature, motor acceleration, time in movement, hand position, light exposure, and sleep rhythms were continuously measured in 12 PD patients and 12 age-matched healthy controls for seven consecutive days using an ambulatory circadian monitoring device (ACM). Our study demonstrates that a multichannel ACM device collects reliable and complementary information from motor (acceleration and time in movement) and common non-motor (sleep and skin temperature rhythms) features frequently disrupted in PD. Acceleration during the daytime (as indicative of motor impairment), time in movement during sleep (representative of fragmented sleep) and their ratio (A/T) are the best indexes to objectively characterize the most common symptoms of PD, allowing for a reliable and easy scoring method to evaluate patients. Chronodisruption score, measured by the integrative algorithm known as the circadian function index is directly linked to a low A/T score. Our work attempts to implement innovative technologies based on wearable, multisensor, objective, and easy-to-use devices, to quantify PD circadian rhythms in huge populations over extended periods of time, while controlling at the same time exposure to exogenous circadian synchronizers

    Multidimensional Circadian Monitoring by Wearable Biosensors in Parkinson’s Disease

    No full text
    Parkinson's disease (PD) is associated with several non-motor symptoms that may precede the diagnosis and constitute a major source of frailty in this population. The digital era in health care has open up new prospects to move forward from the qualitative and subjective scoring for PD with the use of new wearable biosensors that enable frequent quantitative, reliable, repeatable, and multidimensional measurements to be made with minimal discomfort and inconvenience for patients. A cross-sectional study was conducted to test a wrist-worn device combined with machine-learning processing to detect circadian rhythms of sleep, motor, and autonomic disruption, which can be suitable for the objective and non-invasive evaluation of PD patients. Wrist skin temperature, motor acceleration, time in movement, hand position, light exposure, and sleep rhythms were continuously measured in 12 PD patients and 12 age-matched healthy controls for seven consecutive days using an ambulatory circadian monitoring device (ACM). Our study demonstrates that a multichannel ACM device collects reliable and complementary information from motor (acceleration and time in movement) and common non-motor (sleep and skin temperature rhythms) features frequently disrupted in PD. Acceleration during the daytime (as indicative of motor impairment), time in movement during sleep (representative of fragmented sleep) and their ratio (A/T) are the best indexes to objectively characterize the most common symptoms of PD, allowing for a reliable and easy scoring method to evaluate patients. Chronodisruption score, measured by the integrative algorithm known as the circadian function index is directly linked to a low A/T score. Our work attempts to implement innovative technologies based on wearable, multisensor, objective, and easy-to-use devices, to quantify PD circadian rhythms in huge populations over extended periods of time, while controlling at the same time exposure to exogenous circadian synchronizers

    Enfermedad de Parkinson : proceso asistencial integrado

    No full text
    Publicado en la pĂĄgina web de la ConsejerĂ­a de Igualdad, Salud y PolĂ­ticas Sociales: www.juntadeandalucia.es/salud (ConsejerĂ­a de Salud / Profesionales / Nuestro Compromiso por la Calidad / Procesos Asistenciales Integrados)YesLa enfermedad de Parkinson (EP) es la segunda enfermedad neurodegenerativa mĂĄs comĂșn (despuĂ©s de la enfermedad de Alzheimer) y en la actualidad constituye un problema de salud de primer orden por su frecuencia y repercusiĂłn socio-sanitaria. La elaboraciĂłn de este Proceso Asistencial Integrado trata de mejorar los resultados en salud de una forma costo-efectiva, incorporando igualmente aquellos aspectos relacionados con la seguridad, los momentos claves de la informaciĂłn, los cuidados y la toma de decisiones conjuntamente con el paciente, respondiendo precisamente a sus necesidades y expectativas
    corecore