153 research outputs found
Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population
Background: Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. Results: Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells’ (WK1) migration across small perforations (3 μm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 μm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs’ cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. Conclusion: This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies. Graphic Abstract: [Figure not available: see fulltext.
Sphagnum decay patterns and bog microtopography in south-eastern Finland
This study addresses differences in Sphagnum decay in the context of variations in physico-chemical peat properties linked to bog microtopography. The decay rates of six Sphagnum species were studied using litter bag techniques at Haukkasuo, a concentric raised bog in south-eastern Finland. The Sphagnum species were buried in their native microhabitats in oxic, intermittently anoxic and anoxic peat layers for one or two years. The hummock species generally decayed at slower rates than species growing in hollows and transitional zones of hollows (lawns). The average mean loss in mass of all Sphagnum species was 17.7 % after the first year and 18.6 % after two years. The mass loss correlated most positively with oxygen, carbon/nitrogen quotient and sodium, and most negatively with nitrogen, carbon, iron and depth in the native microhabitat. Knowledge about the litter quality of Sphagnum species is important for improving our understanding of ecosystem functions in northern peatlands, and particularly in relation to the development of microtopography
Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering
Silicon-based mesoporous nanoparticles have been extensively studied to meet the challenges in the drug delivery. Functionality of these nanoparticles depends on their properties which are often changing as a function of particle size and surrounding medium. Widely used characterization methods, dynamic light scattering (DLS), and transmission electron microscope (TEM) have both their weaknesses. We hypothesize that conventional light scattering (LS) methods can be used for a rigorous characterization of medium sensitive nanoparticles’ properties, like size, stability, and porosity. Two fundamentally different silicon-based nanoparticles were made: porous silicon (PSi) from crystalline silicon and silica nanoparticles (SN) through sol-gel process. We studied the properties of these mesoporous nanoparticles with two different multiangle LS techniques, DLS and static light scattering (SLS), and compared the results to dry-state techniques, TEM, and nitrogen sorption. Comparison of particle radius from TEM and DLS revealed significant overestimation of the DLS result. Regarding to silica nanoparticles, the overestimation was attributed to agglomeration by analyzing radius of gyration and hydrodynamic radius. In case of PSi nanoparticles, strong correlation between LS result and specific surface area was found. Our results suggest that the multiangle LS methods could be used for the size, stability, and structure characterization of mesoporous nanoparticles.Peer reviewe
Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2
Many drugs with anticancer potential fail in their translation to the clinics due to problems related to pharmacokinetics. LEM2 is a new dual inhibitor of MDM2/mutp53-TAp73 interactions with interesting in vitro anticancer activity, which opens new hopes as an unconventional anticancer therapeutic strategy against cancers lacking p53 or with impaired p53 pathways. As others xanthone derivatives, LEM2 has limited aqueous solubility, posing problems to pursue in vivo assays, and therefore limiting its potential clinical translation. In this work, a mesopomus silicon (PSi)-based nanodelivery system was developed with folate functionalization (APTES-TCPSi-PEG-FA) for targeted delivery, which successfully increased LEM2 solubility when compared to bulk LEM2, evidenced in payload release study. Such effect was reflected on the increase of LEM2 cytotoxicity in HCT116 and MDA-MB-231 cancer cells when treated with LEM2-loaded APTES-TCPSi-PEG-FA, by reducing cell viability lower than 50% in comparison with bulk LEM2. Despite the reduced LEM2 loading degree, which still limits its application in further in vivo assays, the results obtained herein recognize PSi-based nanodelivery systems as a promising strategy to improve LEM2 anticancer activity and bioavailability, which will be relevant for the potential use of this potent TAp73 activator in anticancer therapy.Peer reviewe
Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals
Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV-vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5-15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the pi-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1-2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account
Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes
Aims/hypothesis Islet autoimmunity usually starts with the appearance of autoantibodies against either insulin (IAA) or GAD65 (GADA). This categorises children with preclinical type 1 diabetes into two immune phenotypes, which differ in their genetic background and may have different aetiology. The aim was to study whether Coxsackievirus group B (CVB) infections, which have been linked to the initiation of islet autoimmunity, are associated with either of these two phenotypes in children with HLA-conferred susceptibility to type 1 diabetes. Methods All samples were from children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Individuals are recruited to the DIPP study from the general population of new-born infants who carry defined HLA genotypes associated with susceptibility to type 1 diabetes. Our study cohort included 91 children who developed IAA and 78 children who developed GADA as their first appearing single autoantibody and remained persistently seropositive for islet autoantibodies, along with 181 and 151 individually matched autoantibody negative control children, respectively. Seroconversion to positivity for neutralising antibodies was detected as the surrogate marker of CVB infections in serial follow-up serum samples collected before and at the appearance of islet autoantibodies in each individual. Results CVB1 infections were associated with the appearance of IAA as the first autoantibody (OR 2.4 [95% CI 1.4, 4.2], corrected p = 0.018). CVB5 infection also tended to be associated with the appearance of IAA, however, this did not reach statistical significance (OR 2.3, [0.7, 7.5], p = 0.163); no other CVB types were associated with increased risk of IAA. Children who had signs of a CVB1 infection either alone or prior to infections by other CVBs were at the highest risk for developing IAA (OR 5.3 [95% CI 2.4, 11.7], p <0.001). None of the CVBs were associated with the appearance of GADA. Conclusions/interpretation CVB1 infections may contribute to the initiation of islet autoimmunity being particularly important in the insulin-driven autoimmune process.Peer reviewe
Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine
Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.Peer reviewe
Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space
Mortality of glioblastoma multiforme (GBM) has not improved over the
last two decades despite medical breakthroughs in the treatment of other
types of cancers. Nanoparticles hold tremendous promise to overcome the
pharmacokinetic challenges and off-target adverse effects. However, an
inhibitory effect of nanoparticles by themselves on metastasis has not
been explored. In this study, we developed transferrin-conjugated porous
silicon nanoparticles (Tf@pSiNP) and studied their effect on inhibiting
GBM migration by means of a microfluidic-based migration chip. This
platform, designed to mimic the tight extracellular migration tracts in
brain parenchyma, allowed high-content time-resolved imaging of cell
migration. Tf@pSiNP were colloidally stable, biocompatible, and their
uptake into GBM cells was enhanced by receptor-mediated internalisation.
The migration of Tf@pSiNP-exposed cells across the confined
microchannels was suppressed, but unconfined migration was unaffected. The pSiNP-induced
destabilisation of focal adhesions at the leading front may partially
explain the migration inhibition. More corroborating evidence suggests
that pSiNP uptake reduced the plasticity of GBM cells in reducing cell
volume, an effect that proved crucial in facilitating migration across
the tight confined tracts. We believe that the inhibitory effect of
Tf@pSiNP on cell migration, together with the drug-delivery capability
of pSiNP, could potentially offer a disruptive strategy to treat GBM.</p
Lithiated porous silicon nanowires stimulate periodontal regeneration
Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/β-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/β-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect
- …