2,044 research outputs found

    Spacetime Foam Model of the Schwarzschild Horizon

    Full text link
    We consider a spacetime foam model of the Schwarzschild horizon, where the horizon consists of Planck size black holes. According to our model the entropy of the Schwarzschild black hole is proportional to the area of its event horizon. It is possible to express geometrical arguments to the effect that the constant of proportionality is, in natural units, equal to one quarter.Comment: 16 pages, 2 figures, improved and extended version with some significant changes. Accepted for publication in Phys.Rev.

    Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996?2005

    Get PDF
    International audienceVariations in black carbon (BC) concentrations over different timescales, including annual, weekly and diurnal changes, were studied during ten years in Helsinki, Finland. Measurements were made in three campaigns between 1996 and 2005 at an urban area locating two kilometres of the centre of Helsinki. The first campaign took place from November 1996 to June 1997, the second from September 2000 to May 2001 and the third from March 2004 to October 2005. A detailed comparison between the campaigns was only made for winter and spring months when data from all campaigns existed. The effect of traffic and meteorological variables on the measured BC concentrations was studied by means of a multiple regression analysis, where the meteorological data was obtained from a meteorological pre-processing model (MPP-FMI). The BC concentrations showed annual pattern with maxima in fall and late winter due to the weakened mixing and enhanced emissions. Between 1996 and 2005, the campaign median BC concentrations decreased slightly from 1.11 to 1.00 ?g m?3. The lowest campaign median concentration (0.93 ?g m?3) was measured during the second campaign in 2000?2001, when also the lowest traffic rates were measured. The strongest decrease between Campaigns 1 and 3 was observed on weekday daytimes, when also the traffic rates are highest. The variables affecting the measured BC concentrations most were traffic, wind speed and mixing height. On weekdays, traffic had clearly the most important influence before the wind speed and on weekends the effect of wind speed diluted the effect of traffic. The affecting variables and their influence on the BC concentrations were similar in winter and spring. The separate examination of the three campaigns showed that the effect of traffic on the BC concentrations had decreased during the studied years. This reduction was caused by lower emitting vehicles, since between years 1996 and 2005 the traffic rates had increased

    Black carbon concentration trends in Helsinki during 1996?2005

    No full text
    International audienceThe black carbon (BC) concentration trends were studied during ten years in Helsinki, Finland. Measurements were made in three campaigns between 1996 and 2005 at an urban area locating two kilometres from the centre of Helsinki. The first campaign was from November 1996 to June 1997, the second from September 2000 to May 2001 and the third from March 2004 to October 2005. In this study, only data from winter and spring months was analysed. The effect of traffic and meteorological variables on the measured BC concentrations was studied by means of a multiple regression analysis, where the meteorological data was obtained from a meteorological pre-processing model (MPP-FMI). During the ten years, the campaign median BC concentrations were found to decrease slightly from 1.11 to 1.00 ?g m?3. The lowest campaign median concentration (0.93 ?g m?3) was measured during the second campaign in 2000?2001, when also the lowest traffic rates were measured. The strongest decrease between campaigns 1 and 3 was observed during weekday daytimes, when the traffic rates are highest. The variables affecting the measured BC concentrations most were traffic, wind speed and mixing height. On weekdays, traffic had clearly the most important influence and on weekends the effect of wind speed diluted the effect of traffic. The affecting variables and their influence on the BC concentration were similar in winter and spring. The separate examination of the three campaigns showed that the effect of traffic on the BC concentrations had decreased during the studied years. This reduction was caused by cleaner emissions from vehicles, since between years 1996 and 2005 the traffic rates had increased. A rough estimate gave that vehicle number-scaled BC mass concentrations have decreased from 0.0028 to 0.0020 ?g m?3 between campaigns 1 and 3

    Urban aerosol number size distributions

    No full text
    International audienceAerosol number size distributions were measured continuously in Helsinki, Finland from 5 May 1997 to 28 February 2003. The daily, monthly and annual patterns were investigated. The temporal variation of the particle number concentration was seen to follow the traffic density. The highest total particle number concentrations were usually observed during workdays; especially on Fridays, and the lower concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were usually observed during winter and spring and the lowest during June and July. More than 80\% of the particle number size distributions were tri-modal: nucleation mode (Dp 90 nm). Less than 20% of the particle number size distributions have either two modes or consisted of more than three modes. Two different measurement sites are used; in the first place (Siltavuori, 5 May 1997?5 March 2001), the overall means of the integrated particle number concentrations were 7100 cm?3, 6320 cm?3, and 960 cm?3, respectively, for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6 March 2001?28 February 2003) they were 5670 cm?3, 4050 cm?3, and 900 cm?3. The total number concentration in nucleation and Aitken modes were usually significantly higher during weekdays than during weekends. The variations in accumulation mode were less pronounced. The smaller concentrations in Kumpula were mainly due to building construction and also slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation in both sites

    Quantum-mechanical model of the Kerr-Newman black hole

    Get PDF
    We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole. The physical phase space of such spacetimes is just six-dimensional, and it is spanned by the mass MM, the electric charge QQ and angular momentum JJ of the hole, together with the corresponding canonical momenta. In this six-dimensional phase space we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner (ADM) mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very restricted sense, this eigenvalue equation may be viewed as a sort of "Schr\"odinger equation of black holes". Our "Schr\"odinger equation" implies that the ADM mass, electric charge and angular momentum spectra of black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity M2Q2a2M^2-Q^2-a^2, where aa is the angular momentum per unit mass of the hole, is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of MM, QQ and aa are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 30 pages, 3 figures, RevTe

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF
    Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change

    Pohjois-Pohjanmaan metsäkeskuksen alueen metsävarat 1968–2002

    Get PDF
    MetsävaratTässä julkaisussa esitetään valtakunnan metsien yhdeksänteen inventointiin (VMI9) perustuvat Pohjois-Pohjanmaan metsäkeskuksen alueen metsävaratiedot ja niiden muutokset aikavälillä 1968–2002. Lisäksi analysoidaan muutosten syitä. Yhdeksännen inventoinnin otantamenetelmän suunnittelun periaatteet, maastomittaukset ja tuloslaskenta on kuvattu Metsätieteen aikakauskirjassa 2B/1998 ja Pohjois-Suomessa sovellettava otantamenetelmä Metsätieteen aikakauskirjassa 1B/2001. Uudelleen mitattavien pysyvien koealojen aiheuttamat muutokset mittauksiin on kuvattu julkaisussa Metsätieteen aikakauskirja 2B/2003. §§ Pohjois-Pohjanmaa on maamme suovaltaisin alue. Metsätalousmaata on 3,12 milj. hehtaaria ja siitä on suota 53 %. Soiden ojitus ja muuttuneet metsien käsittelytavat ovat lisänneet puuston kasvua siten, että vuotuinen kasvu on yli kaksinkertainen 1960-luvun lopulla mitattuun kasvuun verrattuna ja on nyt 8,81 milj. m3/v. Männyn kasvu on yli kaksi ja puolikertainen VMI5:n aikaiseen verrattuna. Puuston poistuma ylitti kasvun tai oli lähellä kasvua vielä 1960- ja 1970-luvun taitteessa, mutta on sen jälkeen ollut kasvua pienempi. Puuvaranto on noussut 1960-luvun lopun 119 milj. m3:stä 201 milj. m3:iin. §§ Metsänhoidollisin perustein voitaisiin hakkuita tehdä inventointia seuraavalla 10-vuotiskaudella 1,3 milj. hehtaarilla. Myöhässä olevien hakkuiden pinta-ala on 360 000 ha. Taimikonhoitoa tulisi tehdä 320 000 ha ja ensiharvennuksia 420 000 ha. Ojitettuja soita on 1,03 milj. ha. Kunnostusojituksen tarpeessa olevien soiden pinta-ala on 320 000 ha. §§ Metsälain tarkoittamia erityisen tärkeitä elinympäristöjä vastaavia elinympäristöjä on VMI:n mukaan 0,7 % yhteen lasketusta metsä-, kitu- ja joutomaan pinta-alasta. Kuollutta, vähintään 10 cm:n vahvuista puuta on metsä- ja kitumaalla keskimäärin 4,4 m3/ha. Pohjois-Pohjanmaan alueen metsät täyttävät ne metsäsertifioinnin kriteerit, joissa tietolähteenä on VMI

    Mode resolved density of atmospheric aerosol particles

    Get PDF
    In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm<sup>3</sup> (average 1.5 g/cm<sup>3</sup>) and for Aitken mode from 0.4 to 2 g/cm<sup>3</sup> (average 0.97 g/cm<sup>3</sup>). As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm<sup>3</sup> and for grown 30 nm particles 0.5–1 g/cm<sup>3</sup>. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest
    corecore