18 research outputs found
Uurimuslik õpe veebipõhises õpikeskkonnas: uurimusliku õppe protsesside teoreetiline raamistik
Väitekirja elektrooniline versioon ei sisalda publikatsioone.Uurimuslik õpe on tänapäeva hariduses, eriti loodusainete õpetamisel, väga tähtsal kohal. Sellest annavad tunnistust nii mitmed üle-euroopalised dokumendid kui ka Eestis 2011. aastal vastu võetud uus õppekava, mis seab uurimusliku õppe kesksele kohale.
Uurimuslik õpe on meetod, mis võimaldab õpilasel olla teadlase rollis – lahendada probleeme ning uurida erinevaid nähtusi. Õppimine käib teadlase tööle omaste tegevuste kaudu: sõnastatakse hüpoteese, planeeritakse katseid ning pakutakse lahendusi uuritavatele probleemidele. Uusi teadmisi ei ammutata enam õpetaja dikteerimisel, vaid õpilane ise võtab endale vastutuse teadmiste omandamisel. Nii on ka suurem tõenäosus, et uus teadmine on õpilase jaoks mõistetavam ning püsib ka paremini meeles. Seejuures on ka õpetajal oma roll – ta on suunaja, abistaja ning tagasisidestaja.
Uurimuslikku õpet võib läbi viia nii tava- kui virtuaalses klassiruumis. Virtuaalne klassiruum võimaldab teha katseid, mis tavaoludes oleksid võimatud. Üheks näiteks on kõnealuse doktoritöö käigus välja arendatud uurimuslik õpikeskkond „Noor teadlane“ (http://bio.edu.ee/teadlane), mis on mõeldud eelkõige 6.–9. klassi õpilastele bioloogia õppimiseks. Selles on viis uurimuslikku ülesannet, milles otsitakse vastuseid näiteks küsimusele „Miks lihased väsivad erinevalt?“. Igas ülesandes teevad õpilased läbi teadustööle omased etapid: määratlevad probleemi, sõnastavad uurimisküsimuse ja hüpoteesi, planeerivad ja viivad läbi katse, analüüsivad katsetulemusi ning teevad selle põhjal järeldused.
Doktoritöö tulemusena koostati uurimusliku õppe mudel, mis aitab paremini mõista, kuidas uurimuslikud protsessid omavahel seostuvad, ning võimaldab seeläbi uute uurimuslike õppematerjalide koostamisel seda arvestada. Lisaks selgus, et rakendades kompleksset uurimusliku õppe keskkonda, on võimalik arendada õpilaste uurimuslikke oskusi ja ainealaseid teadmisi. Leiti, et uurimuslike oskuste arengut mõjutavad ka oskuste omavahelised seosed ning uurimuslikud üldteadmised.Inquiry-based learning has an important role in today’s science education. This is confirmed by many European-level documents and recent curriculum reforms in Estonia, where inquiry-based learning is an umbrella term for science related subjects.
Inquiry-based learning is a learning method where students take on the role of a scientist, mirroring activities employed by scientists—formulate hypotheses, carry out investigations and collect evidence to propose explanations about the investigated phenomena. Teachers no longer are the primary source of knowledge. Students take their own responsibility for obtaining new knowledge. The teacher’s role is to enable the construction process as a facilitator and to provide resources.
Inquiry-based learning is applicable in regular or virtual classrooms. The latter enable conducting experiments impossible in a regular classroom (e.g., experiments that are dangerous). One example of such virtual classrooms is the inquiry-based learning environment Young Researcher (http://bio.edu.ee/teadlane), which is designed for students from the 6th to the 9th grade for learning biology. There are five inquiry-based tasks that need to be solved (e.g., “Why do muscles wear down differently?”). The entire learning process is structured according to inquiry learning stages: problem identification; research question and hypothesis formulation; planning and carrying out an experiment; analysis and interpretation of data; and drawing conclusions.
As a result of the doctoral study, a theoretical model of inquiry-based learning was constructed that serves as a conceptual structure for showing how inquiry processes are related to each other. Additionally, it was revealed that applying a comprehensive inquiry-based learning environment improves students’ inquiry skills and general inquiry knowledge; also, it was found that the development of inquiry skills is influenced by the interactions between such skills, as well as by general inquiry knowledge
Koostöise probleemilahendamisoskuse kujundamine uurimuslikku õpet kasutades
Loodusainete tundides lahendatakse loodusteadusliku sisuga probleeme enamasti uurimuslike tegevustega. Uuringu eesmärk on selgitada välja, mis toetab õpilaste tulemuslikku koostööd uurimuslikes tegevustes, ja anda loodusainete õpetajatele soovitusi, kuidas integreerida koostöise probleemilahendamise oskuse ning aine- ja uurimuslike teadmiste kujundamist. Uuringus osalesid 7. klassi õpilased (N = 44), kellel tuli nutitelefoni kasutades virtuaallaboris kaaslasega koostööd teha. Tulemusi analüüsiti kvalitatiivselt deduktiivse sisuanalüüsi ja kvantitatiivselt Hesse jt (2015) raamistiku järgi. Uuring näitab, et õpilased viib tulemusliku koostööni õpetaja juhitud klassiarutelu. Õpilaste meelest aitavad koostöisele probleemilahendamisele kaasa katsetamine, mitme variandi läbiproovimine ning üksteisega suhtlemine. Õpilased vajavad täpseid juhiseid, et edukaks uurimuslikuks õppeks analüütiliselt mõelda, ülesanne uuesti läbi vaadata, teemaga seotud küsimusi esitada ja/või tõenditel põhinevalt teaduslikult arutleda.
Summar
Nutiseadmete kasutamise profiilid loodusainete ja matemaatika õppimise kontekstis
Nutiseadmeid kasutatakse sageli igapäevaelus, kuid ei ole teada, mil viisil ja kui laialdaselt rakendatakse neid õppimise eesmärgil. Selle väljaselgitamiseks korraldati ülevaateuuring, milles osales 3521 õpilast 6. ja 9. klassist. DIGCOMPi raamistikust lähtudes hindasid õpilased, kui sageli nad kasutavad nutiseadmeid õppimiseks loodusainetes ja matemaatikas. Õpilased jagati hierarhilise klasteranalüüsi abil viide rühma: sünnipärased digikodanikud, infoinimesed, suhtlevad infoinimesed, loomeinimesed ja nutiseadmete mittekasutajad. Neist nelja esimese profiilid iseloomustavad eri viisil nutiseadmete kasutajaid, keda on kokku ligikaudu pool valimisse kuulunud õpilastest. Teise poole moodustavad nutiseadmete mittekasutajad, kelle seas saab eristada täpsemaid alarühmi (kokku 11). Alarühmade võrdlemine võimaldab kavandada viise, kuidas kujundada nutiseadmete kasutamise harjumust. Samuti ilmneb uurimistulemustest, et 6. ja 9. klassi õpilased ning poisid ja tüdrukud kuuluvad eri rühmadesse erineva tõenäosusega.
Summar
Why do students choose to study Information and Communications Technology?
Abstract It is a worldwide problem that although many students are highly interested in Information and Communications Technology (ICT), they do not study it at the higher education level, or if they do then many of them eventually dropout. We studied the reasons student candidates choose to study ICT, in order to gather data that can be used for improving future ICT recruitment and retention. During the admissions procedure to three higher education institutions in Estonia, 1,464 student candidates were asked what reasons influenced them to apply to Informatics or Information Technology. On average, 2.6 candidates competed per available position at the institutions. Qualitative content analysis was used to code the candidates' open-ended answers and resulted inductively in 14 distinguishable categories. The most frequent reasons for studying ICT were general interest in ICT, previous experience in the field, need for personal professional development, and importance of the field in the future. Interestingly, only a few candidates expressed as a reason the importance of high salaries. Chi-square analysis showed that candidates were accepted with higher probability if they found ICT to be suitable for them, or expressed good opportunities in the labour market. These results are useful for planning effective admission procedures to recruit ICT students
JÄRJEPIDEVUS INSENERI ÕPITEES: Continuity in Engineering Studies
High dropout rates in engineering studies are an issue that higher education is still struggling with. Several studies have been conducted that report different potential reasons and solutions concerning the problem of dropout. For example, a study carried out among engineering students by the Estonian Aviation Academy showed low levels of knowledge and skills related to exact sciences and low levels of technical skills to be the fi rst indication of the risk of dropping out as early as in the fi rst year of studies. This shows that continuity between secondary education and higher education is interrupted, which is why obtaining new knowledge and skills may be too challenging for the student. In order to minimize or avoid such challenges or obstacles, it is important to ensure unbroken continuity between secondary education and higher education. In this paper we make and describe recommendations that support ensuring continuity in engineering studies. As a first recommendation, we find it crucial to increase collaboration between higher education (proficiency related subjects) and secondary education teachers (mainly mathematics and physics teachers). This fosters a common understanding of what expectations are set for students in upper secondary school and what is expected from them during engineering studies. It is also important to know not only what is learnt in upper secondary school but what teaching methods are implemented in exact science related subjects. During the curriculum reforms in Estonia more emphasis has been put on applying inquiry-based learning methods in teaching science and exact science related subjects in basic and upper secondary school. Additionally, supportive materials for teachers and curriculum descriptions encourage teachers to support students’ self-regulation. This is supported by the literature, which states that learning is more efficient when students control their own learning. Self-regulation relies on planning, monitoring and evaluating the learning process. The second recommendation for supporting continuity is to embed inquiry-based learning and self-regulation related activities in engineering courses. The third recommendation is related to the development process of learning materials for first-year engineering students, as the materials should consider what is taught in upper secondary school. In conclusion, we need to create conditions for students to experience a smooth transition from secondary education to higher education. Contribution by all teachers and students could help achieve the required continuity.
 
Assessing Students' Digital Literacy with Interactive Computer-Based Tasks Created in Google Apps Script
International audienceThis paper presents the development and testing of two interactive computer-based tasks for assessing aspects of students' digital literacy. The tasks were created using Google Apps Script to allow students to work with authentic digital productivity tools. Results from 156 university students indicate that the task requiring analysis of data in a spreadsheet application was significantly more difficult than the task requiring information literacy to make edits in a word processor application. These types of tasks offer more authentic ways for students to engage with digital technology during the assessment of their digital literacy. This study highlights the potential of Google Apps Scripts for developing and delivering tasks in performance-based assessments of students' digital literacy
LA MISE EN ŒUVRE DE STRATÉGIES DE GAMIFICATION POUR L'AMÉLIORATION DES COMPÉTENCES DIGITALES
International audienceTransforming the learning process through strategies and tools dedicated to reinforcing experiences, producing commitment, unifying tasks and being fun and persuasive will generate changes in the particular needs of the educational context. In fact, gamification is presented as one of the catalysts of educational potential based on the application of play elements affecting motivation and knowledge apprehension. This research aims to deepen in the suitability of incorporating gamification on the learning process for que acquisition of digital skills. Thus, in this research is examined the disposition of gamification within the global framework of references to digital skills [1] organized into 7 areas and subdivided into 26 competencies: browsing, searching and filtering data, information and digital content; evaluating data, information and digital content; managing data, information and digital content; Interacting through digital technologies; sharing through digital technologies; engaging in citizenship through digital technologies; collaborating through digital technologies; netiquette; managing digital identity; developing digital content; integrating and re-elaborating digital content; copyright and licenses; programming; protecting devices, protecting personal data and privacy; protecting health and well-being; protecting the environment; solving technical problems; identifying needs and technological responses; creatively using digital technologies and identifying digital competence gaps; computational thinking; Operating specialized digital technologies for a particular field; Interpreting and manipulating data, information and digital content for a particular field. The methodology used is based on the application of a questionnaire to 50 experts in educational technologies from Europe and Latin America, obtaining as a result that there is greater convenience in the implementation of gamification for the development of the following digital competencies: collaborating through digital technologies, managing digital identity, programming, engaging in citizenship through digital technologies, sharing through digital technologies and protecting health and well-being. In conclusion, it is evident that the use of gamification for the development of digital competencies is mainly focused on the areas of safety, communication and collaboration. It is therefore recommended to formalize designs of gamification interfaces that address these issues
Programmi RITA tegevuse 1 projekti „Eseme- ja mobiilsidevõrgu kaitse simuleerimine küberharjutusväljal“ lõppraport
Please request an access to restricted files from Mario Mäeots ([email protected]) or [email protected] project was commissioned by the Estonian Research Council to support the goals of the Estonian
Ministry of Defence. The project was funded through the European Regional Development Fund
program "Strengthening of sectoral R&D (RITA)". The project was conducted between 2020 and 2022