12 research outputs found

    Zika Virus Infection Produces a Reduction on Aedes aegypti Lifespan but No Effects on Mosquito Fecundity and Oviposition Success

    Get PDF
    A Zika virus (ZIKV) pandemic started soon after the first autochthonous cases in Latin America. Although Aedes aegypti is pointed as the primary vector in Latin America, little is known about the fitness cost due to ZIKV infection. We investigated the effects of ZIKV infection on the life-history traits of Ae. aegypti females collected in three districts of Rio de Janeiro, Brazil (Barra, Deodoro, and Porto), equidistant ~25 km each other. Aedes aegypti mosquitoes were classified into infected (a single oral challenge with ZIKV) and superinfected (two ZIKV-infected blood meals spaced by 7 days each other). ZIKV infection reduced Ae. aegypti survival in two of the three populations tested, and superinfection produced a sharper increase in mortality in one of those populations. We hypothesized higher mortality with the presence of more ZIKV copies in Ae. aegypti females from Porto. The number of eggs laid per clutch was statistically similar between vector populations and infected and uninfected mosquitoes. Infection by ZIKV not affected female oviposition success. ZIKV infection impacted Ae. aegypti vectorial capacity by reducing its lifespan, although female fecundity remained unaltered. The outcome of these findings to disease transmission intensity still needs further evaluation

    Genetic diversity of Echinococcus vogeli in the western Brazilian Amazon

    Get PDF
    Human polycystic echinococcosis is a parasitic infection caused by the larval stage of Echinococcus vogeli, which occurs in rural areas of Central and South America. Until now, little information on the genetic variability of E. vogeli is available. Here, 32 samples from human-excised E. vogeli cysts had a 396-bp sequence of the mitochondrial cytochrome oxidase I (COI) gene sequenced and compared to another 17 COI sequences representing nine Echinococcus species. A Bayesian COI tree revealed that all E. vogeli sequences formed a monophyletic and well-supported clade with an E. vogeli reference sequence. The occurrence of geographically restricted E. vogeli COI haplotypes suggests retention of ancestral polymorphisms with little migration in Acre, Brazil

    Dengue Exposure and <i>Wolbachia</i> wMel Strain Affects the Fertility of Quiescent Eggs of <i>Aedes aegypti</i>

    No full text
    (1) Background: The deployment of the bacterium Wolbachia to reduce arbovirus transmission is ongoing in several countries worldwide. When Wolbachia-carrying Aedes aegypti are released and established in the field, females may feed on dengue-infected hosts. The effects of simultaneous exposure on life-history traits of Ae. aegypti to Wolbachia wMel strain and dengue-1 virus DENV-1 remain unclear. (2) Methods: We monitored 4 groups (mosquitoes with either DENV-1 or Wolbachia, coinfected with DENV-1 and Wolbachia, as well as negative controls) to estimate Ae. aegypti survival, oviposition success, fecundity, collapsing and fertility of quiescent eggs for 12 weeks. (3) Results: Neither DENV-1 nor Wolbachia had a significant impact on mosquito survival nor on mosquito fecundity, although the last parameter showed a tendency to decrease with ageing. There was a significant decrease in oviposition success in individuals carrying Wolbachia. Wolbachia infection and storage time significantly increased egg collapse parameter on the egg viability assay, while DENV-1 had a slight protective effect on the first four weeks of storage. (4) Conclusions: Despite limitations, our results contribute to better understanding of the tripartite interaction of virus, bacteria and mosquito that may take place in field conditions and aid in guaranteeing the Wolbachia strategy success

    DENV-1 Titer Impacts Viral Blocking in <i>w</i>Mel <i>Aedes aegypti</i> with Brazilian Genetic Background

    No full text
    Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes’ bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans

    Molecular mechanisms of thermal resistance of the insect trypanosomatid <i>Crithidia thermophila</i>

    No full text
    <div><p>In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid <i>Crithidia luciliae thermophila</i>, which we reclassified as a separate species <i>C</i>. <i>thermophila</i>. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, <i>Leptomonas seymouri</i>, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.</p></div

    Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila

    No full text
    In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates
    corecore