927 research outputs found
Twisted mass lattice QCD with non-degenerate quark masses
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally
twisted mass term is considered in the framework of chiral perturbation theory.
For two and three numbers of quark flavours, respectively, with non-degenerate
quark masses the pseudoscalar meson masses and decay constants are calculated
in next-to-leading order including lattice effects quadratic in the lattice
spacing a.Comment: 9 pages, LaTeX2e, reference adde
Twisted mass chiral perturbation theory for 2+1+1 quark flavours
We present results for the masses of pseudoscalar mesons in twisted mass
lattice QCD with a degenerate doublet of u and d quarks and a non-degenerate
doublet of s and c quarks in the framework of next-to-leading order chiral
perturbation theory, including lattice effects up to O(a^2). The masses depend
on the two twist angles for the light and heavy sectors. For maximal twist in
both sectors, O(a)-improvement is explicitly exhibited. The mixing of
flavour-neutral mesons is also discussed, and results in the literature for the
case of degenerate s and c quarks are corrected.Comment: LaTeX2e, 12 pages, corrected typo
Hot electroweak matter near to the endpoint of the phase transition
The electroweak phase transition is investigated near to its endpoint in the
framework of an effective three-dimensional model. We measure the very weak
interface tension with the tunneling correlation length method. First results
for the mass spectrum and the corresponding wave functions in the symmetric
phase are presented.Comment: 3 pages, 5 figures, uses espcrc2.sty, contribution to LATTICE9
Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that
We aim to offer a kind of unifying view on two popular topics in the studies
of nonperturbative aspects of Yang-Mills theories in the Landau gauge: the
so-called Gribov-Zwanziger approach and the Kugo-Ojima confinement criterion.
Borrowing results from statistical thermodynamics, we show that imposing the
Kugo-Ojima confinement criterion as a boundary condition leads to a modified
yet renormalizable partition function. We verify that the resulting partition
function is equivalent with the one obtained by Gribov and Zwanziger, which
restricts the domain of integration in the path integral within the first
Gribov horizon. The construction of an action implementing a boundary condition
allows one to discuss the symmetries of the system in the presence of the
boundary. In particular, the conventional BRST symmetry is softly broken.Comment: 5 pages. v2 matches version to appear in PhysRevD (RC
Structure of penetrable-rod fluids: Exact properties and comparison between Monte Carlo simulations and two analytic theories
Bounded potentials are good models to represent the effective two-body
interaction in some colloidal systems, such as dilute solutions of polymer
chains in good solvents. The simplest bounded potential is that of penetrable
spheres, which takes a positive finite value if the two spheres are overlapped,
being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model
is far from trivial, since interactions are not restricted to nearest neighbors
and so its exact solution is not known. In this paper we first derive the exact
correlation functions of penetrable-rod fluids to second order in density at
any temperature, as well as in the high-temperature and zero-temperature limits
at any density. Next, two simple analytic theories are constructed: a
high-temperature approximation based on the exact asymptotic behavior in the
limit and a low-temperature approximation inspired by the exact
result in the opposite limit . Finally, we perform Monte Carlo
simulations for a wide range of temperatures and densities to assess the
validity of both theories. It is found that they complement each other quite
well, exhibiting a good agreement with the simulation data within their
respective domains of applicability and becoming practically equivalent on the
borderline of those domains. A perspective on the extension of both approaches
to the more realistic three-dimensional case is provided.Comment: 19 pages, 11 figures, 4 tables: v2: minor changes; published final
versio
The supersymmetric Ward identities on the lattice
Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY
Yang Mills theory discretized on the lattice with Wilson fermions (gluinos).
They are used in order to compute non-perturbatively a subtracted gluino mass
and the mixing coefficient of the SUSY current. The computations were performed
at gauge coupling =2.3 and hopping parameter =0.1925, 0.194,
0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our
results are consistent with a scenario where the Ward identities are satisfied
up to O(a) effects. The vanishing of the gluino mass occurs at a value of the
hopping parameter which is not fully consistent with the estimate based on the
chiral phase transition. This suggests that, although SUSY restoration appears
to occur close to the continuum limit of the lattice theory, the results are
still affected by significant systematic effects.Comment: 34 pages, 7 figures. Typo corrected, last sentence reformulated,
reference added. To appear in Eur. Phys. J.
Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos
In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light
dynamical gluinos the low energy features of the dynamics as confinement and
bound state mass spectrum are investigated. The motivation is supersymmetry at
vanishing gluino mass. The performance of the applied two-step multi-bosonic
dynamical fermion algorithm is discussed.Comment: latex, 48 pages, 16 figures with epsfi
Interaction effects in the spectrum of the three-dimensional Ising model
The two-point correlation functions of statistical models show in general
both poles and cuts in momentum space. The former correspond to the spectrum of
massive excitations of the model, while the latter originate from interaction
effects, namely creation and annihilation of virtual pairs of excitations. We
discuss the effect of such interactions on the long distance behavior of
correlation functions in configuration space, focusing on certain time-slice
operators which are commonly used to extract the spectrum. For the 3D Ising
model in the scaling region of the broken-symmetry phase, a one-loop
calculation shows that the interaction effects on time-slice correlations is
non negligible for distances up to a few times the correlation length, and
should therefore be taken into account when analysing Monte Carlo data.Comment: 10 pages, LaTeX file + 1 ps figure, uses axodraw.st
- …