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Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion,
boundary conditions, BRST breaking and all that
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We aim to offer a kind of unifying view on two popular topics tine studies of nonperturbative aspects of
Yang-Mills theories in the Landau gauge: the so-called @riBwanziger approach and the Kugo-Ojima con-
finement criterion. Borrowing results from statisticaltim@dynamics, we show that imposing the Kugo-Ojima
confinement criterion as a boundary condition leads to a fiealdjet renormalizable partition function. We
verify that the resulting partition function is equivalemith the one obtained by Gribov and Zwanziger, which
restricts the domain of integration in the path integrahinitthe first Gribov horizon. The construction of an
action implementing a boundary condition allows one touliscthe symmetries of the system in the presence
of the boundary. In particular, the conventional BRST syrmynis softly broken.

I. INTRODUCTION Q={A}, 0,A1=0, M2 > 0}. We recognize that configura-
tionsAj € Q are relative minima of the functionﬁlddx(Aﬁ)z,
The Gribov-Zwanziger (GZ) approach focuses on the is-u€ SU(N). The boundangdQ, of Q is called the (first) Gribov
sue of gauge copies in the Landau gauge. Gribov signalledorizon. It was shown with increasing rigor thatis convex,
in his seminal work|]1] that the Landau gauge condition,bounded in all directions in field space, and that every gauge
duA, = 0 is ambiguous: there exist gauge equivalent configfield has at least one gauge equivalent representdnt(see
urationsAj, which also obey A, = 0. Examples of gauge [2,/3] and references therein). The inverse of the FP operato
copies are provided by the zero modes of the Faddeev-Popar equivalently the ghost propagator with external gaude, fie
(FP) operator, which enters the quantization formula ofg¢an G2°(k,A), can be used to implement the restrictionQpas
Mills theories. Indeed, given an infinitesimal gauge transf done semiclassically by Gribov. Following [1], we can write
mation connectingy, with A}, i.e. A% = AZ—D¥P, it is b1
clear thad,A|, = dyA, = 0 is fulfilled whenM?wP = 0, with GP(k,A) = oA ~
MaP = —9,D3P = —9,, (0,,0% + g f°PA%) being the FP oper- ’
ator. We recall that the FP action in the Landau gauge for @t lowest order, it can be shown thatlo(k, A) is a decreas-
d-dimensional Euclidean gauge theory, witk< 4, reads ing function ofk [1], hence one can impose

1+06(0,A) > 0. (5)

(MTH2(kA).  (4)

St ot = S + / dx (b0,A%+ 0,0, (1)
Condition [3), known as the Gribov no-pole condition, inggli

. . . . that the ghost propagat@®°(k, A) has no poles at finite non-
_ 1 dyFapa _ )
\é‘”th Smm = 3 /d IXFWFH, the"cll(assmall?);%r_\rg Mills action. \2nishingk. Moreover, positivity ofG2(k, A) ensures that the
xpression[([1) enjoys the well-known symmetry, €N ihov horizondQ is not crossed. As done by Gribaov [1], the

erated by the nilpotent operatgrs® =0, i.e. no-pole condition can be embodied into the partition fusrcti
using ad-functiont,
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sA = D3 s = %gfa’“cbcC T2 =b? stf=0. (2)
7/ — / dD3(1+ 0(0,A))e S+t ©6)
For the partition function, we can write ] _ .
Later on, Zwanziger [2] was able to implement the no-pole
- - St ab S condition to all orders. Relying on the equivalence between
Z—/dH:P—/d(De o —/dAdetM 5(0A)e =M. the microcanonical and the canonical Boltzmann ensemble
(3) (see also Section Il), he was able to show that the partition
We introduced the notational shorthadddenoting all the function [8) has to be replaced by
fields present in the action, withyrp the usual FP measure. |
Gribov proposed to restrict the domain of integration to 7" = /dAB(auAu)detMabe*S*MW“fd X (7)
the subspac€, where the Hermitian operatdd2® is posi-
tive definite. More precisely, we define the Gribov regionas__

1 Condition [B) can be implemented by inserting a step funcfactor
6(1+a(k,A)). However, in the thermodynamic limit, tf&function can
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where the Zwanziger horizon function reads

/ dixh(x,A) = g? / dxdy F22°A0 (x) (M ~1)2%(x, ) F9e°A(y)
(8)

The mass parametgiis determined by a gap equation, com-
monly called the horizon condition
(h(x)) =d(N*~1), )

where (h) is calculated withz”, i.e. with the measure
dpepe’’ /90 The factord(N2 — 1) in the r.h.s. was ob-

Evidently, the extra fieldép’, ¢7° o°,wi®), can influence
the dynamics of the theory in a nontrivial fashion [5]. These
fields arise as a consequence of the presence of the Gribov
horizon. As such, they can give rise to additional nonpbgur
tive effects. For example, inl[6], we have provided evidewice
the existence of a dimension 2 condensgigoq° — afi“wi®),
in d = 4. A posteriori, this is not that surprising, given that the
restriction toQ introduces the mass scaleto the theory, and
that the horizon conditio ]9) can be reexpressed at thé loca
level as(g f**A%(05° + B1)) = —2y°d(N* — 1), i.e. a dimen-
sion 2 condensate fat = 4. Nontrivial condensates are an

tained [2] by determining the lowest eigenvalue of the FP opimportant source of nonperturbative effects in gauge ileepr

erator. Working out the condition](9) at lowest order repro-

hence the general interest in their study. In particulanefi-

duces the Gribov result/[1]. The action corresponding to théion 2 condensates attracted a lot of attention in recemsyea

partition function [[¥) contains theonlocalhorizon term[(B).

see e.g.l[4,/7] and references therein. In the current dase, t

To arrive at a workable quantum model, it was shown [3] thaPPerator(@0° — ti°wil®) can be added to the theory in a

(@) can be put in an equivaletdcal form by introducing a
set of complex conjugate commuting variablgg’, $7°), and
anticommuting oneg(wfi, &%), so that we finally obtain the
Gribov-Zwanziger action,

Soz = Smigi+ / % (30, D305 — %0, DR

—g (avmﬁc) fabm(DvC)b LTC
—yPgfabead (¢ﬁ°+q5ﬁ°) +d(N2-1) y“) . (10)

The horizon condition[{9) is translated % = 0, with I'(y)

the effective action, defined as" = [ dde=Sez. This can be
easily checked, given that we tajke: 0. The mass parameter
y turns out to be proportional thgs, and as such it can give
rise to nonperturbative corrections. This is not unexpkcte
as the restriction to the regidd is a highly nontrivial oper-
ation, which goes beyond perturbation theory. At the pertur
bative level, the ghost propagator stays positive. We ars th

far from the horizon and nothing happens. It is only at lower

momenta, where normal perturbation theory starts to fzal t
the fields begin to feel the restriction@ Having brought the

action in standard local form, we have all the usual concept

and machinery of local quantum field theory to our disposal
A first important property of[(1l0) is its renormalizabilitg t
all orders of perturbation theory. Hence, the restrictio@t
makes perfect sense at the quantum level, and finite resalts
found, consistent with the renormalization group![3, 4]. We
stress here that the actidn{10), with the horizon condif@n

implemented, is nothing else than the correct extensiofi to a

orders of the usual Yang-Mills action, supplemented with th

Landau gauge fixing, in the presence of a nontrivial boundary

condition, being the no-pole conditidd (5). In this fashiibis

assured that we have taken care of a certain amount of gauge

copies, including those related to the zero moded®t No-

tice that this does not mean that the Gribov issue has bee

completely solved. It is known tha still contains copies,
related to the fact thaﬁddx(Aﬁ)2 can have many relative min-
ima starting from the sam&,. A further restriction is needed,

way that preserves renormalizability [6], which is already
remarkable feature, indicative of its possible relevanéé
studied the effects of this condensate using variationalipe
bation theory, and found that the gluon propagatimes not
vanish at zero momentunb(0) # 0), that the ghost propa-
gator behaves like- 3 at small momenta, and that there is
a violation of positivity in the gluon propagatati [6]. Any of
these findings is in good agreement wathmost recent lattice
data, obtained at previously unseen large volumes [8, %o Al
certain results based on Schwinger-Dyson (SD) and/or Func-
tional Renormalization Group (FRG) equations are consiste
with these data, see e.g. [10, 11]. Without taking into ac-
count the effects related (@7, °05° — &} °wf), the GZ action
(10) also leads to the positivity violation of the gluon pagp.-

tor, however withD(0) = 0, and an infrared enhanced ghost.
These latter two results are no longer supported by latate. d
Hence, it seems crucial to take into account additional eonp
turbative effects related to the restriction to the redibfi.e.

the boundary condition) to allow for consistency between th
analytical GZ results and most recent lattice predictidre
interpretation of the analyticall[5} 6] and the lattice desof

[8] was challenged in papers like [9,/110, 12]. It was argued
that the ghost propagator must be infrared enhanced to en-
ure confinement, whereby only colorless states are pHysica
These statements are based on the Kugo-Ojima (KO) analysis
of gauge theories [13, 14]. This analysis relies on the dpera
formalism, and it has been shown that, given a globally well-

Yefined BRST charg®g, the color charg®? is a BRST exact

variation,Q? = Qg(...), if the gluon propagator contains no
massless poles. The color chaf@&is then well-defined only
if the KO confinement criterion holds

u(0) = -1, (11)
with u(k?) defined through the following Green function
; k
doxex <Df}dcd (X)D" b%e(0)>FP: 5 <Pw(k)u(k2) - k‘ézv)
(12)

keeping only gauge configurations that are absolute minfma o
fddX(Aﬁ)z; the latter define the fundamental modular region 2 The Landau gluon propagator can be parametrized in termiseaform

(FMR) A.

factorD(K?) as(AR(K)IAS(—k)) = 5228, — S5 )D(K?).
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in Minkowski space.(...)gp stands for the expectation value fH:E%’. In order to establish the equivalence between the

taken with the FP actiori)3), whilB (k) = g —kukv/k*  microcanonical and the (Boltzmann) canonical ensemble we
for the transverse projector. Using the nilpotent BRST gbar yewrite the quantitg(E) in the following form
Qg, one can invoke its cohomology to define the physical sub-

space, and by means @ = Qg(...), conclude that phys- iote g -

ical states cannot carry color. A few comments are in or- 2(E) = /dH5(E—H) = /dulim+gﬁeﬁ(E H)

der. First of all, in the KO framework [13, 14], the existence dp dp

of a globally well-defined BRST charge &ssumed Thus, = Tf(B) = Te*w@, (14)
Tl Tl

the issue of the (non)existence of a nonperturbativelydvali
BRST symmetry is not explicitly faced. Secondly, the link f(B) = /dp dBE-H) w(B)=—logf(B). (15)
between the BRST chard@s and global color charg€? is

made qsing thg actioll(1), i.e. by employing the }Jsual FFit can be shown that, in the thermodynamic linNt,V — oo
gauge fixed action. As such, the Gribov problemis simply not, i NV fixed, the s'addle point approximation b’ecome’s ex-

addressed. It is worth noticing that Kugo and Ojima did not ;
impose the criterion[(11), but they derived it as a conditionaCt' We refer to [15] for an overview of the proof. So,

to be checked/calculated. Though, nowadays, in functional 1 £(3)
formalisms as inl[10], the criterion is used iaput Kugo I(E)= ﬁf(B*) ,with o (B*) = 6 0. (16)
showed in|[13] that, in the Landau gauge, one can rewrite the (B*)
ghost propagator From eq(18) it follows that
" " 6ab 1
W = T T (13) - [duHePH an

= <H>BO|tZ = " .
meaning that the criterioi_ (L 1) is equivalent to an infrazad JdpePH
hanced ghost. The ghost enhancement is then imposed #Ris is the gap equation determining the critical parameter

a boundary condition in order to favor the so-called scaling,, : —
type solution of the SD and/or FRG equations [10]. Let ugB ' Analojg:uuglii,ﬁ*la can also be shown that/[18) yic: =

already draw attention to the close similarity existingden  (O)gg, = Tdpe P for the average of any quanti®(q, p).
the no-pole conditior[{5) and the criteridn{11). Imposing
0(0) = —1 exactly corresponds 190) = —1.

B. Imposing the KO criterion yields the GZ framework

II. u(0)=—-1AS ABOUNDARY CONDITION ) )
Starting from [I2) and performing Lorentz and color con-

We want to show that the constraint0) = —1 can be im- tractions and taking thp — O limit, we can write

plemented directly into the theory, by appropriately myihi§
the measure one starts from. We shall see that the resudting a —(VT)fl/ddy/ddX<Dﬁd(X)Dﬁe(Y)(Mfl)de(Xa Y)ep
tion will be exactly the same as the GZ action. This has sévera 2

interesting consequences which we will discuss in Sectlon|  — (N"=1)((d=1)u(0) - 1), (18)
We shall first give an overview of some results from thermo-

dynamics we intend to employ. after passing to Euclidean space, as in any functional icdat

approachV T denotes the spacetime volume. The identifica-
tion betweery...c%(x)Té(y))gp and (... (M~1)9€(x,y))p can

A. Microcanonical ensemble and equivalence with the be easily proven using the path integfdl (3). After discard-
canonical Boltzmann ensemble in the thermodynamic limit ing terms which are total derivatives, one easily sees tfeat t
quantity in the l.h.s. of{(18) is, up to the sign, the Zwankeige

We consider a discrete system, whose Hamiltonian @orlzon functiorh(x). More precisely, we have

H(q, p), with 3N degrees of freedom. The averages in the d
microcanonical ensemble are constructed out of @8 = / d_yddx<gfade5(x)(Mfl)ed(x7 y)g fameAE(y)>FP

VT
Z(E)= [ _du= [duaE-H). .
HoE = —(vT) [ @) ep = — (M. (19)
wheredu = d®Nqd®Np represents the classical phase space
and E stands for the constant energy of the system. AverWe observe that the KO condition cannot be realized with the
ages in the microcanonical ensemble are define@y;, =  standard FP measudgrp, otherwise we would have

—_— <h(x)>FP:d(N2_1)a (20)

3 g(0) is related too(0,A) by making the gauge field dynamical and per- WhiCh WOUld Contra.diCt Zwanziger's .reSU (9), obtained by
forming the corresponding path integration. restricting the path integral to the Gribov regi@n We now
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implement the KO criteriom(0) = —1 as a boundary condi- forming 2 pairs of BRST doublets. In the absence of the GZ
tion, amounting to start from the modified measure restriction or equivalently of the KO criterion, i.e. whee: 0,
we are then assured that these fields are trivial in the BRST
r_ 2 d cohomology, thus completely decoupling from the physical
diep — di = dpFP6<VTd(N -1 _/d xh(x)> - (21 subspace [16]. Let us come to another important statement.
If Gribov copies are taken into account a la GZ, which is
which clearly implementgh(x)) = d(N?— 1), or equivalently  equivalent to imposing the KO criterion as we have verified in
u(0) = —1. We are thus led to consider the partition function the previous section, the precise meaning of the KO confine-
ment criterion becomes unclear. Since the BRST symmetry is
/du/ _ /dH:P5 (VTd(NZ— 1)— /ddxh(x)) broken, one can no longer simply use it to define the physi-
cal subspace. It is sometimes mentioned in the literatwae th
there might be a nonperturbative, globally well-defined BRS
= /dA5(aA) dety e 5™ § (VTd(NZ— 1) —/ddXh(X)) chargeQj, and it is thisQj KO is referring to [10[ 12]. We
cannot exclude this possibility, but this is a highly novitri
= /dCD6 <VTd(N2— 1) — /ddxh(x)> e SMgf (22) statement and, obviously, it asks for a proof. At present, we
are unaware of any such proof. Even if the cha@gewould
) _ ) _ _ be known, the KO analysis would need to be reworked from
Expressior(22) defines a microcanonical ensemble. Since Weyg start, as it explicitly relies on the FP actibh (1) andveon
are working in a continuum field theory, we are working N tional BRST symmetny{2). Simply stating th@k, must exist
the thermodynamic limit, hence we have an equivalence with, o ger to define the physical subspace analogously to what i
a Bqltzman_n canonical ensemble as outlined in the Previou§one at perturbative level, does, in our opinion, not sohee t
section. Using analogous arguments as there, we arrive at problem. Also, the relation between a new BRST chadge
- and the global color charge would need to be reestablished,
/dH/ = /dH=P e/ [d%xhi = /leFP e, (23)  if any relation exists to begin with. One can speculate that i
might be possible to modifginto s, such that li_os, =s
where the mass parametgiollows from the gap equation ~ ands,Sez = 0. However, such a possibility can be easily dis-
proved. Indeed, aghas mass dimension 1, and by keeping in
[ dpep e H h(x) mind that the BRST generatedoes not affect the dimension
~ [dupe S of the field$, it is impossible to introduce extradependent
terms in the BRST transformation of the fields while preserv-
which is the analogue of (17). We conclude that we can coning locality, Lorentz covariance and glob@U(N) structure.
sistently encode the boundary conditignl(11) at the level ot et us briefly return to the functional SD (FRG) approaches.
the action, which turns out to be identical to the GZ action,Now that a renormalizable action has been constructed hwhic
eq.[7). Of course, we can localize it into the fofml(10), with implements the desired boundary condition explicitly, oae
corresponding local formulation of the gap equation. write down the corresponding SD (FRG) equations and try to
solve them, given that the gap equatibnl (24) must be solved
simultaneously. We expect that different kinds of solusion
lll.  DISCUSSION similar to those found in_[10], will emerge. A way to dis-
tinguish between them could be based on selecting the most
Naively, one might already expect that the introduction ofstable solution, i.e. the one with the lowest corresponding
a nontrivial boundary condition can seriously influence thevacuum energy. We notice that there is still a lot of infor-
dynamics of the theory. One of our main points is to stresgnation available about the actidn {10), e.g. nonrenorraaliz
that one should introduce the boundary condition into tiee th tion properties typical of the Landau gauge, a renormaléab
ory from the beginning, to fully grasp all its nontrivial as- softly broken Slavnov-Taylor identity, eto.| [6]. We condéu
pects. Having at our disposal an action automatically implethat in the current spirit of using the KO conditidn[11) as in
menting the boundary condition, we can study an important1Q,l12], there is no clear connection between the KO cdteri
aspect: the symmetries of the theory in the presence of the(0) = —1 and the highly nontrivial issue of confinement. All
boundary. In principle, imposing a boundary could jeopar-that one can say is that there is a violation of positivity in
dize certain symmetries of the original action. We have althe gluon propagator, which is indicative of confinement, bu
ready shown in[[6] that placing a boundary in field spacecertainly nota proof ofit. Also, in the light of our previotes-
at the first Gribov horizon breaks the conventional BRSTsults, we disagree with the statement madg!in[9, 10, 12]tabou
symmetry [2). The practical implementation of the horizonthe fact that the SD(FRG) solution with an infrared enhanced
by means of the GZ formulation confirms this, §&z = ghost propagator would refer to the absolute Landau gauge,
gy? [ ddx fabe Af}wﬁc— (Dﬁmcm) q;ﬁc+¢ﬁc £0. We no- & to the restriction to the FMR. Unfortunately, at present,

d (N2 - 1) = <h(x)>Boltz = (24)

tice that the BRST generatdi (2) has a natural extensioreto th
extra fields(§7°, 5% @}, «f°), given by

93" = Wf° S = 0 S = 9 PT=0,  (25)

4 The usual canonical dimensions are assigned to the fiellls [16



5

away to implementthe restriction to the FMRemainscom- and GZ frameworks are equivalent, provided the KO bound-
pletely unknown. Moreover, we remind that the recent lattic ary condition is properly taken into account from the begin-
data have given quite clear evidence about the fact that theing. The conventional BRST operatbl (2) suffers from a soft
ghost propagator is not enhanced in the infrared, within thdreaking, which relies precisely on the implementatiorhef t
current accuracy of implementing the Landau gauge as thkoundary condition. Some ingredients in certain formadism
minimum of the functionalf ddx(Aﬂ)z, ue SU(N) [8]. Even  which we have tried to outline, have thus to be considered
if in the future more powerful algorithms would bring the sim as assumptions rather than as proofs. In particular, the pre
ulations closer to the FMR, the ghost propagator will not get cise relation between implementing the KO criterion and-con
more enhanced than before, on the contrary [17]. Moreovefinement remains to be clarified. One of the challenges lying
we have shown in this letter that the KO boundary conditionahead is how to define what the relevant physical operaters ar
is equivalent with the GZ framework, which explicitly reger in the KOGZ framework, if there is no (local) nilpotent BRST
to the restriction to the Gribov regidR. This is irrespective  symmetry generator found.
of the fact that the ghost is enhanced or not, implementing KO
breaks the conventional BRST symmetry, and refe3,toot
to A. We wish to underline that implementing the boundary
as in eqsl(23) an@(24) will not necessarily give rise to an in Acknowledgments
frared enhanced ghost. Additional nontrivial quantumectffe
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