1,187 research outputs found

    Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey

    Get PDF
    Inland waters transport large amounts of dissolved organic matter (DOM) from terrestrial environments to the oceans, but DOM also reacts en route, with substantial water column losses by mineralization and sedimentation. For DOM transformations along the aquatic continuum, lakes play an important role as they retain waters in the landscape allowing for more time to alter DOM. We know DOM losses are significant at the global scale, yet little is known about how the reactivity of DOM varies across landscapes and climates. DOM reactivity is inherently linked to its chemical composition. We used fluorescence spectroscopy to explore DOM quality from 560 lakes distributed across Sweden and encompassed a wide climatic gradient typical of the boreal ecozone. Six fluorescence components were identified using parallel factor analysis (PARAFAC). The intensity and relative abundance of these components were analyzed in relation to lake chemistry, catchment, and climate characteristics. Land cover, particularly the percentage of water in the catchment, was a primary factor explaining variability in PARAFAC components. Likewise, lake water retention time influenced DOM quality. These results suggest that processes occurring in upstream water bodies, in addition to the lake itself, have a dominant influence on DOM quality. PARAFAC components with longer emission wavelengths, or red-shifted components, were most reactive. In contrast, protein-like components were most persistent within lakes. Generalized characteristics of PARAFAC components based on emission wavelength could ease future interpretation of fluorescence spectra. An important secondary influence on DOM quality was mean annual temperature, which ranged between −6.2 and +7.5 °C. These results suggest that DOM reactivity depends more heavily on the duration of time taken to pass through the landscape, rather than temperature. Projected increases in runoff in the boreal region may force lake DOM toward a higher overall amount and proportion of humic-like substances

    Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni

    Full text link
    The scaling of the yields of heavy projectile residues from the reactions of 25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is studied. Isotopically resolved yield distributions of projectile fragments in the range Z=10-36 from these reaction pairs were measured with the MARS recoil separator in the angular range 2.7-5.3 degrees. The velocities of the residues, monotonically decreasing with Z down to Z~26-28, are employed to characterize the excitation energy. The yield ratios R21(N,Z) for each pair of systems are found to exhibit isotopic scaling (isoscaling), namely, an exponential dependence on the fragment atomic number Z and neutron number N. The isoscaling is found to occur in the residue Z range corresponding to the maximum observed excitation energies. The corresponding isoscaling parameters are alpha=0.43 and beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni system. For the Kr+Sn system, for which the experimental angular acceptance range lies inside the grazing angle, isoscaling was found to occur for Z<26 and N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically, alpha decreasing with Z and beta increasing with N. This variation is found to be related to the evolution towards isospin equilibration and, as such, it can serve as a tracer of the N/Z equilibration process. The present heavy-residue data extend the observation of isotopic scaling from the intermediate mass fragment region to the heavy-residue region. Such high-resolution mass spectrometric data can provide important information on the role of isospin in peripheral and mid-peripheral collisions, complementary to that accessible from modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Relativistic mean-field study of neutron-rich nuclei

    Get PDF
    A relativistic mean-field model is used to study the ground-state properties of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by present day phenomenology, are added to the model Lagrangian in order to modify the poorly known density dependence of the symmetry energy. These new terms soften the symmetry energy and reshape the theoretical neutron drip line without compromising the agreement with existing ground-state information. A strong correlation between the neutron radius of 208Pb and the binding energy of valence orbitals is found: the smaller the neutron radius of 208Pb, the weaker the binding energy of the last occupied neutron orbital. Thus, models with the softest symmetry energy are the first ones to drip neutrons. Further, in anticipation of the upcoming one-percent measurement of the neutron radius of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the neutron radius of 208Pb and neutron radii of elements of relevance to atomic parity-violating experiments is established.Comment: 14 pages, 5 figure

    Spaces of finite element differential forms

    Full text link
    We discuss the construction of finite element spaces of differential forms which satisfy the crucial assumptions of the finite element exterior calculus, namely that they can be assembled into subcomplexes of the de Rham complex which admit commuting projections. We present two families of spaces in the case of simplicial meshes, and two other families in the case of cubical meshes. We make use of the exterior calculus and the Koszul complex to define and understand the spaces. These tools allow us to treat a wide variety of situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds., Springer 2013. v2: a few minor typos corrected. v3: a few more typo correction

    Comparison of usefulness of computer assisted continuous 48-h 3-lead with 12-lead ECG ischaemia monitoring for detection and quantitation of ischaemia in patients with unstable angina

    Get PDF
    AIMS: The selection of ECG leads used for ST monitoring may influence detection and quantitation of ischaemia. METHODS: We compared on-line continuous 48-h 12-lead against 3-lead ST monitoring in 130 unstable angina patients (Mortara. ELI-100). Onset and offset of ST episodes were defined by the lead with the first > or = 100 microV ST change relative to baseline and the lead with the latest return to baseline ST level, respectively. ST episodes were calculated for 12 leads and 3 leads (V2, V5, III) separately. RESULTS: ST episodes were detected in 88 patients (77%) by 12-lead and in 71 patients (62%) by 3-lead ST monitoring (P < 0.02). The median number (25.75%) of episodes/patient was 1 (0.3) for 3-lead and 2 (1.6) for 12-lead (P < 0.0001). The total duration of ischaemia detected during 12-lead far exceeded 3-lead monitoring: 12.3 (1, 58.2) and 1.7 (0, 23.3) min respectively (P < 0.0001). The probability of recurrent ischaemia declined most during the first 24 h of monitoring. After a period without ST changes of 1, 12, 24 and 36 h, the probabilities of recurrent ischaemia were 63, 31, 14 and 9%, respectively. CONCLUSIONS: Continuous 12-lead ST monitoring increases detection rate and duration of ST episodes compared to 3-lead ST monitoring. The use of continuous 12-lead ECG monitoring devices on emergency wards and coronary care units is recommended

    LpL^p-Spectral theory of locally symmetric spaces with QQ-rank one

    Full text link
    We study the LpL^p-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M=Γ\XM=\Gamma\backslash X with finite volume and arithmetic fundamental group Γ\Gamma whose universal covering XX is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one

    Techno-economic assessment guidelines for CO2 utilization

    Get PDF
    Carbon Capture and Utilization (CCU) is an emerging technology field that can replace fossil carbon value chains, and that has a significant potential to achieve emissions mitigation or even “negative emissions”—however in many cases with challenging technology feasibility and economic viability. Further challenges arise in the decision making for CCU technology research, development, and deployment, in particular when allocating funding or time resources. No generally accepted techno-economic assessment (TEA) standard has evolved, and assessment studies often result in “apples vs. oranges” comparisons, a lack of transparency and a lack of comparability to other studies. A detailed guideline for systematic techno-economic (TEA) and life cycle assessment (LCA) for CCU technologies was developed; this paper shows a summarized version of the TEA guideline, which includes distinct and prioritized (shall and should) rules and which allows conducting TEA in parallel to LCA. The TEA guideline was developed in a co-operative and creative approach with roughly 50 international experts and is based on a systematic literature review as well as on existing best practices from TEA and LCA from the areas of industry, academia, and policy. To the best of our knowledge, this guideline is the first TEA framework with a focus on CCU technologies and the first that is designed to be conducted in parallel to LCA due to aligned vocabulary and assessment steps, systematically including technology maturity. Therefore, this work extends current literature, improving the design, implementation, and reporting approaches of TEA studies for CCU technologies. Overall, the application of this TEA guideline aims at improved comparability of TEA studies, leading to improved decision making and more efficient allocation of funds and time resources for the research, development, and deployment of CCU technologies

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    Collective modes of asymmetric nuclear matter in Quantum HadroDynamics

    Full text link
    We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHDQHD) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a δ\delta-meson-like effective field) on the collective response of asymmetric nuclear matter (ANMANM). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute ANMANM we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig
    corecore