8,944 research outputs found

    Periodic functions for Hecke triangle groups, and the Seiberg zeta functions as a Fredholm determinant

    No full text

    Lower bounds for Lyapunov exponents of flat bundles on curves

    No full text

    Stabilization of colloidal palladium particles by a block copolymer of polystyrene and a block containing amide sidegroups

    Get PDF
    A block copolymer of polystyrene and poly(tert-butylmethacrylate) was prepared by anionic polymerization. The ester groups of the poly(tert-butylmethacrylate) were hydrolyzed, after wich the remaining carboxyl groups were reacted with pyrrolidine. The resulting block copolymer with amide sidegroups was used for stabilization of a palladium colloid in toluene

    Granulocyte-activating mediators (GRAM)

    Get PDF
    In the present study we investigated the capability of human epidermal cells to generate granulocyte-activating mediators (GRAM). It could be shown that human epidermal cells as well as an epidermoid carcinoma cell line (A431) produce an epidermal cell-derived granulocyte-activating mediator (EC-GRAM) which stimulates human granulocytes to release significant levels of toxic oxygen radicals as measured by a lucigenin-dependent chemiluminescence (CL). For further characterization of EC-GRAM the A431 cell line was used. Supernatants of A431 cells usually contained maximal EC-GRAM levels within 24 h of incubation. Factor production was enhanced by bacterial lipopolysaccharide (LPS), but not by silica particles and PHA. Moreover, freeze-thaw lysates of A431 cells and extracts of heat-separated human epidermis contained significant levels of EC-GRAM. Preincubation of granulocytes with EC-GRAM resulted in an enhanced response to subsequent stimulation with the chemotactic peptide f-met-phe. In contrast EC-GRAM did not affect the response to PMA or zymosan particles. However, EC-GRAM treated granulocytes were unresponsive to restimulation with EC-GRAM. Upon high performance liquid chromatography (HPLC) gel filtration EC-GRAM eluted within two major peaks exhibiting a molecular weight of 17 kD and 44 kD. According to its biochemical and biological properties EC-GRAM can be separated from other cytokines such as ETAF/-interleukin 1, interleukin 2, interferons, granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor (TNF). However, an antibody to human GM-CSF neutralized about 75% of the activity. These results indicate that EC-GRAM activity stimulating the generation of reactive oxygen species by granulocytes is probably due to GM-CSF

    Microscopic Enhancement of Heavy-Element Production

    Get PDF
    Realistic fusion barriers are calculated in a macroscopic-microscopic model for several soft-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a realistic picture are very different from those obtained in a purely macroscopic model. For reactions on 208:Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for soft-fusion reactions leading to compound systems near Z = 110. These results show that no significant ``extra-extra-push'' energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not included here. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of the figures, available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/mehe

    Spinodal phase separation in semi-interpenetrating polymer networks - polystyrene-cross-polymethacrylate

    Get PDF
    Morphology control in semi-interpenetrating polymer networks has been achieved by means of a two-step process, separating morphology formation and polymerization/crosslinking. Phase textures formed during spinodal liquid/liquid demixing of a solution of atactic polystyrene in methacrylate monomers were arrested by thermoreversible gelation of the polymer-rich phase as this phase passed its glass transition temperature. The phase separated structure was permanently stabilized by low-temperature crosslinking ultraviolet (UV) polymerization of the methacrylate monomer, and studied by transmission electron microscopy. Thus, it was directly observed how the initial demixing process depended on the initial viscosity of the polymer solution and the mode of quenching. Arrest of the earliest stage of spinodal demixing resulted in separated domains of 0.05-0.08 m thickness, which were separated by a distance of the spinodal wavelength . A cocontinuous network only developed in a relatively late stage of demixing

    Intrazeolite metal carbonyl topotaxy. A comprehensive structural and spectroscopic study of intrazeolite Group VI metal hexacarbonyls and subcarbonyls

    Get PDF
    This paper focuses attention on the intrazeolite anchoring, thermal decarbonylation, ligand exchange, and addition chemistry of M(CO)6-M'56Y, where M = Cr, Mo, W; M' = H, Li, Na, K, Rb, Cs. The key points to emerge from this study include the following. (i) M(CO)6-M'56Y samples have the hexacarbonylmetal(O) molecule associated with two alpha-cage extraframework cations (or Bronsted protons), via the oxygen end of two trans bonded carbonyls with a saturation loading of 2M(CO)6/alpha-cage. (ii) M(CO)6-M'56Y samples have the hexacarbonylmetal(O) guest confined to the internal surface of the zeolite with a homogeneous distribution throughout the zeolite crystals. (iii) A Mo and Rb EXAFS structure analysis of 8{Mo(CO)6}-Rb56Y shows that the alpha-cage encapsulated Mo(CO)6 guest maintains its structural integrity, with some evidence for anchoring via extraframework Rb+ cations. (iv) A rapid C-13O intrazeolite ligand exchange occurs M(12CO)6-M '56Y to yield M(12CO)m(13CO)6-m-M'56Y, the extent of which depends on the 13CO loading. (v) M(CO)3-M'56Y can be cleanly generated via the mild vacuum thermal decarbonylation of M(CO)6-M56Y, the tricarbonyl stoichiometry of which is unequivocally established from its observed and calculated diagnostic M(12CO)n(13CO)3-n-M'56Y vibrational isotope pattern and from EXAFS structural data. (vi) Intrazeolite ractions of M(CO)3-M'56Y with large and small arenes, trienes, and phosphines cleanly yield the respective intrazeolite six-coordinate complexes (shown to be identical with the products of direct impregnation of the latter complexes), thereby supporting the tricarbonylmetal(0) assignment as well as pinpointing the location of the M(CO)3-M'56Y tricarbonylmetal(0) fragment on the internal surface of the zeolite. (vii) Cation effects in the mid/far-IR, EXAFS data, and optical reflectance spectra indicate that the supercage-confined M(CO)3-M'56Y moiety is anchored to an oxygen framework site rather than to an extrawork cation site via the metal or oxygens of the carbonyls. (viii) The tricarbonyl fragments show C(s) and C3-upsilon symmetry depending on the choice of M and M' which can be rationalized in terms of a second-order Jahn-Teller effect. (ix) EXAFS data for the mild thermal decomposition of Mo(CO)3-Rb56Y demonstrates the formation of molybdenum atoms statistically distributed in the zeolite lattice

    Intrazeolite phototopotaxy. EXAFS analysis of precursor 8{W(CO)6}-Na56Y and photooxidation products 16(WO3)-Na56Y and 28(WO3)-Na56Y

    Get PDF
    The intrazeolite photooxidation chemistry of alpha-cage encapsulated hexacarbonyltungsten(0) in Na56Y with O2, denoted n{W(CO)6}-Na56Y/O2/hv, which has previously been shown to provide a novel synthetic pathway to alpha-cage located tungsten(VI) oxide, denoted n(WO3)-Na56Y, is now the subject of an extended X-ray absorption fine structure (EXAFS) analysis. The EXAFS data of a precursor 8{W(CO)6}Na56Y, which contains on average one W(CO)6 per alpha-cage shows that the W(CO)6 guest maintains its structural integrity with only minor observable perturbations of the skeletal WC and ligand CO bonds compared to those found for the same molecule in the free state. The EXAFS analysis results for the photoxidation products 16(WO3)-Na56Y and 28(WO3)-Na56Y are very similar and display the presence of two terminal tungsten-oxygen bonds (1.75-1.77 angstrom) and two bridging tungsten-oxide bonds (1.94-1.95 angstrom), together with a short distance to a second tungsten (3.24-3.30 angstrom). This bond length and coordination number information for n = 16 and 28 samples is best interpreted in terms of the formation of a single kind of tungsten trioxide dimer unit (WO3)2, most likely interacting with extraframework Na+ cations, denoted ZONa...O2W(mu-O)2WO2...NaOZ. In conjunction with earlier chemical and spectroscopic information on this system, the EXAFS data support the contention that 16(WO3)-Na56Y contains a uniform array of single size and shape tungsten (VI) oxide dimers (WO3)2 housed in the 13-angstrom supercages of the zeolite Y host. The sequential addition of WO3 units to the 16(WO3)-Na56Y sample appears to increase the (WO3)2 dimer population, causing a buildup of alpha-cage encapsulated dimers-of-dimers {(WO3)2}2 rather than further cluster growth to trimers (WO3)2 and/or tetramers (WO3)4
    corecore