442 research outputs found

    Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation

    Get PDF
    Due to its micrometer-scale resolution and inherently micro-destructive nature, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is particularly suited to exploring the thin and closely spaced layers in the oldest sections of polar ice cores. Recent adaptions to the LA-ICP-MS instrumentation mean we have faster washout times allowing state-of-the-art 2-D imaging of an ice core. This new method has great potential especially when applied to the localization of impurities on the ice sample, something that is crucial, to avoiding misinterpretation of the ultra-fine-resolution signals. Here we present the first results of the application of LA-ICP-MS elemental imaging to the analysis of selected glacial and interglacial samples from the Talos Dome and EPICA Dome C ice cores from central Antarctica. The localization of impurities from both marine and terrestrial sources is discussed, with special emphasis on observing a connection with the network of grain boundaries and differences between different climatic periods. Scale-dependent i mage analysis shows that the spatial significance of a single line profile along the main core axis increases systematically as the imprint of the grain boundaries weakens. It is demon-strated how instrumental settings can be adapted to suit the purpose of the analysis, i.e., by either employing LA-ICP-MS to study the interplay between impurities and the ice microstructure or to investigate the extremely thin climate proxy signals in deep polar ice

    Ice Core Science Meets Computer Vision: Challenges and Perspectives

    Get PDF
    Polar ice cores play a central role in studies of the earth's climate system through natural archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections, where the identification of paleoclimate signals is particularly challenging. For this, state-of-the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has the potential to be revolutionary due to its combination of micron-scale 2D chemical information with visual features. However, the quantitative study of record preservation in chemical images raises new questions that call for the expertise of the computer vision community. To illustrate this new inter-disciplinary frontier, we describe a selected set of key questions. One critical task is to assess the paleoclimate significance of single line profiles along the main core axis, which we show is a scale-dependent problem for which advanced image analysis methods are critical. Another important issue is the evaluation of post-depositional layer changes, for which the chemical images provide rich information. Accordingly, the time is ripe to begin an intensified exchange among the two scientific communities of computer vision and ice core science. The collaborative building of a new framework for investigating high-resolution chemical images with automated image analysis techniques will also benefit the already wide-spread application of LA-ICP-MS chemical imaging in the geosciences.Comment: 9 pages, 2 figures, submitted to Frontiers in Computer Science, section Computer Visio

    Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: A multi-biomarker reconstruction from Paru Co

    Get PDF
    The fire history of the Tibetan Plateau over centennial to millennial timescales is not well known. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, can provide continuous records of local environmental change on millennial scales during the Holocene through the accumulation and preservation of specific organic molecular biomarkers. To reconstruct Holocene fire events and vegetation changes occurring on the southeastern Tibetan Plateau and the surrounding areas, we used a multi-proxy approach, investigating multiple biomarkers preserved in core sediment samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47045.600N, 92°21007.200 E; 4845ma.s.l.). Biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, fecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals, and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Insolation changes and the associated influence on the Indian summer monsoon (ISM) affect the vegetation distribution and fire types recorded in Paru Co throughout the Holocene. The early Holocene (10.7- 7.5 cal kyr BP) n-alkane ratios demonstrate oscillations between grass and conifer communities, resulting in respective smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by high-molecular-weight PAHs. Forest cover increases with a strengthened ISM, where coincident high levoglucosan to mannosan (L = M) ratios are consistent with conifer burning. The decrease in the ISM at 4.2 cal kyr BP corresponds with the expansion of regional civilizations, although the lack of human FeSts above the method detection limits excludes local anthropogenic influence on fire and vegetation changes. The late Holocene is characterized by a relatively shallow lake surrounded by grassland, where all biomarkers other than PAHs display only minor variations. The sum of PAHs steadily increases throughout the late Holocene, suggesting a net increase in local to regional combustion that is separate from vegetation and climate change

    A year-round measurement of water-soluble trace and rare earth elements in arctic aerosol: Possible inorganic tracers of specific events

    Get PDF
    This study presents the year-round variability of the water-soluble fraction of trace elements (wsTE) and rare earth elements (wsREE) among size segregated airborne particulate matter samples collected at Ny-Ã… lesund in the Svalbard Archipelago from 26 February 2018 to 26 February 2019. Six different aerosol dimensional fractions were collected using a multi-stage Andersen impactor to better understand local and global circulation with the aim of disentangling the source of inorganic tracers from specific natural or anthropogenic sources. The wsTE and wsREE content, especially in the finest fractions in remote areas, is primarily related to long-range transport and it gives valuable information on (1) the global circulation, (2) the natural sources and (3) the contribution of human activities to aerosol composition. A Factor Analysis was applied to the dataset, including levoglucosan and methanesulfonic acid (MSA), to assess the possibility of using certain inorganic tracers as indicators of specific transport events or circulation regimes. We also investigate back-trajectories to determine potential source areas

    The Great Acceleration of fragrances and PAHs archived in an ice core from Elbrus, Caucasus

    Get PDF
    The Great Acceleration of the anthropogenic impact on the Earth system is marked by the ubiquitous distribution of anthropogenic materials throughout the global environment, including technofossils, radionuclides and the exponential increases of methane and carbon dioxide concentrations. However, personal care products as direct tracers of human domestic habits are often overlooked. Here, we present the first research combining fragrances, as novel personal care products, and polycyclic aromatic hydrocarbons (PAHs) as combustion and industrial markers, across the onset of the Great Acceleration in the Elbrus, Caucasus, ice core. This archive extends from the 1930s to 2005, spanning the profound changes in the relationship between humans and the environment during the twentieth century. Concentrations of both fragrances and PAHs rose throughout the considered period, reflecting the development of the Anthropocene. However, within this rising trend, remarkable decreases of the tracers track the major socioeconomic crises that occurred in Eastern Europe during the second half of the twentieth century

    Trace and rare earth elements determination in milk whey from the Veneto region, Italy

    Get PDF
    Multi-element analyses determine the content of 17 trace elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Cs, Ba, Pb, U) and 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y) in whey samples from cow and goat milk by inductively coupled plasma mass spectrometry and inductively coupled plasma-sector field mass spectrometry. A total of 261 milk whey samples were collected from four locations in the Veneto region of northeastern (NE) Italy. These samples contain a wide range concentration of 17 trace elements (0.06–1530 μg kg−1) and 14 rare earth elements (0.16–28.2 ng kg−1) in whey samples, but do not reach toxic concentrations. Elemental fingerprinting of trace and rare earth elements in cow and goat milk whey provide information on the dairy quality and, as they reflect the local environmental conditions, result in an excellent indicator of their geographical origin

    Endovascular Treatment of Aorto-iliac Aneurysms: Four-year Results of Iliac Branch Endograft

    Get PDF
    Introduction: The aim of this report was to analyse early and mid-term outcomes of endovascular treatment (endovascular aneurysm repair, EVAR) for aorto-iliac aneurysms with the use of an iliac branch device (IBD). Report: A total of 85 EVAR procedures with IBD were electively carried out in 81 patients between September 2007 and August 2012. Technical success was obtained in 98.7% of the cases. The mean follow-up duration was 20.4 months (SD ± 15.4). There was one IBD occlusion (1.2%). Estimated 48 months' survival, freedom from re-intervention and branch occlusion were 76.7%, 88.3% and 98%, respectively. Conclusions: EVAR for aorto-iliac aneurysms using IBD is an effective procedure with low complication and re-intervention rates at mid-term follow-up

    Fragrance materials (FMs) affect the larval development of the copepod Acartia tonsa: An emerging issue for marine ecosystems

    Get PDF
    Fragrance materials (FMs) are used in a variety of detergents and cosmetics, including household and personal care products. Despite their widespread use and the growing evidence of their occurrence in surface waters worldwide, very little is known about their toxicity towards marine species, including a key component of the marine food webs such as copepods. Thus, we investigated the toxicity of six of the more long-lasting and stable commercial fragrances, including Amyl Salicylate (AMY), Oranger Crystals (ORA), Hexyl Salicylate (HEX), Ambrofix (AMB), Peonile (PEO), and Benzyl Salicylate (BZS), to assess their ability to impair the larval development of the calanoid copepod Acartia tonsa. FMs inhibited the development of A. tonsa significantly at concentrations by far lower than the effect-concentrations reported in the literature for aquatic species. The more toxic FMs were HEX (EC50 = 57 ng L−1), AMY (EC50 = 131 ng L−1) and ORA (EC50 = 766 ng L−1), while the other three compounds exerted toxic effects at concentrations higher than 1000 ng L−1 (LOEC at 1000 ng L−1 for PEO and BZS, and at 10,000 ng L−1 for AMB). Early life-stage mortality was unaffected by FMs at all the tested concentrations. A comparison with water concentrations of FMs reported in the literature confirmed that FMs, especially HEX and AMY, may act as contaminants of potential concern in many aquatic habitats, including urban areas and remote and polar environments

    Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala

    Get PDF
    Abstract Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500–6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity
    • …
    corecore