27 research outputs found
Impact of perinatal nutrition on the programming of the somatotropic axis
La nutrition au cours de la période postnatale précoce programme l’activité de l’axe somatotrope à l’âge adulte (GH/IGF-1). Une altération de la nutrition chez les souriceaux au cours de la lactation altère la croissance staturo-pondérale de façon permanente et augmente leurs susceptibilités à développer des pathologies cardio-métaboliques à l’âge adulte. La restriction au cours de la lactation induit une diminution des taux plasmatiques en IGF-1 et en leptine. Ceci est associé à une diminution transitoire de l’innervation de l’éminence médiane par les neurones GHRH, ce qui induit une hypoplasie hypophysaire permanente en cellules somatotropes. Durant ma thèse, j’ai étudié l’impact de la nutrition périnatale sur la mise en place de l’axe somatotrope, notamment les mécanismes impliqués dans la régulation du développement des neurones GHRH. Les cultures d’explants de noyaux arqués issus de souriceaux normalement nourris indiquent que l’IGF-1 stimule de façon préférentielle la croissance axonale des neurones GHRH par l'intermédiaire des voies PI3K/AKT et MAPK. La leptine présenterait quant à elle un effet plus global sur les neurones du noyau arqué, stimulant la croissance axonale des neurones GHRH et des neurones orexigène à NPY/AgRP. Les neurones GHRH issus de souris restreintes sont quant à eux résistants à la stimulation de la croissance axonale par l’IGF-1 ou la leptine. Concernant l’IGF-I, cette résistance est associée à une altération des capacités de phosphorylation de la voie PI3K/AKT, tandis que celles de l’IGF-1R et de la voie MAPK ne sont pas altérées.Nutrition during lactation programs the activity of the somatotropic axis (GH/IGF-1). Alteration of nutrition during the early postnatal period in mice induces increased susceptibility to develop cardiovascular and metabolic pathologies later in life. Nutritional restriction during lactation permanently alters growth of mice. Ten days old restricted pups present decreased plasmatic level of IGF-1 and Leptin. They also present a transient alteration of median eminence innervation by GHRH neurons, which induce a permanent somatotroph cells (GH) hypoplasia in pituitary. The aim of my thesis was to study the impact of nutrition during the perinatal period on the programming of the somatotropic axis, notably the cellular and molecular mechanisms involved in the regulation of GHRH neuronal development. In vitro cultures of arcuate nucleus explants of hypothalamus from normally fed pups indicate that IGF-1 preferentially stimulates axonal growth of GHRH neurons by its signaling pathways PI3K/AKT and MAPK. Leptin present a more global effect and is able to stimulate axonal growth of arcuate nucleus neurons, including GHRH and AgRP neurons. GHRH neurons from restricted pups are resistant to the stimulation of axonal growth by IGF-1 or leptin. Regarding IGF-1, this resistance is associated with an alteration of phosphorylation capacities of the PI3K/AKT pathway, whereas those from IGF-1R and MAPK are not altered
Impact de la nutrition périnatale sur la mise en place de l'axe somatotrope
Nutrition during lactation programs the activity of the somatotropic axis (GH/IGF-1). Alteration of nutrition during the early postnatal period in mice induces increased susceptibility to develop cardiovascular and metabolic pathologies later in life. Nutritional restriction during lactation permanently alters growth of mice. Ten days old restricted pups present decreased plasmatic level of IGF-1 and Leptin. They also present a transient alteration of median eminence innervation by GHRH neurons, which induce a permanent somatotroph cells (GH) hypoplasia in pituitary. The aim of my thesis was to study the impact of nutrition during the perinatal period on the programming of the somatotropic axis, notably the cellular and molecular mechanisms involved in the regulation of GHRH neuronal development. In vitro cultures of arcuate nucleus explants of hypothalamus from normally fed pups indicate that IGF-1 preferentially stimulates axonal growth of GHRH neurons by its signaling pathways PI3K/AKT and MAPK. Leptin present a more global effect and is able to stimulate axonal growth of arcuate nucleus neurons, including GHRH and AgRP neurons. GHRH neurons from restricted pups are resistant to the stimulation of axonal growth by IGF-1 or leptin. Regarding IGF-1, this resistance is associated with an alteration of phosphorylation capacities of the PI3K/AKT pathway, whereas those from IGF-1R and MAPK are not altered.La nutrition au cours de la période postnatale précoce programme l’activité de l’axe somatotrope à l’âge adulte (GH/IGF-1). Une altération de la nutrition chez les souriceaux au cours de la lactation altère la croissance staturo-pondérale de façon permanente et augmente leurs susceptibilités à développer des pathologies cardio-métaboliques à l’âge adulte. La restriction au cours de la lactation induit une diminution des taux plasmatiques en IGF-1 et en leptine. Ceci est associé à une diminution transitoire de l’innervation de l’éminence médiane par les neurones GHRH, ce qui induit une hypoplasie hypophysaire permanente en cellules somatotropes. Durant ma thèse, j’ai étudié l’impact de la nutrition périnatale sur la mise en place de l’axe somatotrope, notamment les mécanismes impliqués dans la régulation du développement des neurones GHRH. Les cultures d’explants de noyaux arqués issus de souriceaux normalement nourris indiquent que l’IGF-1 stimule de façon préférentielle la croissance axonale des neurones GHRH par l'intermédiaire des voies PI3K/AKT et MAPK. La leptine présenterait quant à elle un effet plus global sur les neurones du noyau arqué, stimulant la croissance axonale des neurones GHRH et des neurones orexigène à NPY/AgRP. Les neurones GHRH issus de souris restreintes sont quant à eux résistants à la stimulation de la croissance axonale par l’IGF-1 ou la leptine. Concernant l’IGF-I, cette résistance est associée à une altération des capacités de phosphorylation de la voie PI3K/AKT, tandis que celles de l’IGF-1R et de la voie MAPK ne sont pas altérées
Régulation de la croissance : des mécanismes épigénétiques ?
International audienceOrganism development is controlled by both genetic programs and the environment to insure a reproductive success as adults. Linear growth is an important part of the development and is mostly controlled by genetic factors. However, the variability of height in a given species does not seem to be specifically associated with SNP. This suggests that environment may play a crucial role. In agreement, an important part of height-related genes present CpG island in their proximal promoter, indicating potential involvement of epigenetic mechanisms. In mammals, the linear growth is regulated by the IGF system, with IGF-I and IGF-II during the fetal period, and IGF-I being included within the somatotropic axis during the postnatal period. Nutrition during the lactating period programs linear growth and adult size through a modulation of the somatotropic axis development and of the setting of its activity later on. The study of underlying mechanisms suggest two waves of programming, which involve both structural adaptation during the early postnatal period and permanent functional adaptation in adulthood. The former may involve a direct stimulation of axon growth of GHRH neurons by IGF-I in first weeks of life while the latter could involve permanent epigenetic modifications in adulthood.Le développement de l’organisme est contrôlé à la fois par des programmes génétiques et par l’environnement afin d’assurer un succès reproductif à l’âge adulte. La croissance staturale est une partie importante du développement et est principalement contrôlée par des facteurs génétiques. Cependant, la variabilité de la taille chez une espèce donnée ne semble pas être entièrement sous la dépendance du background génétique. Ceci suggère que l’environnement pourrait jouer un rôle crucial. En accord avec cela, une proportion importante des gènes liés à la croissance présente un îlot CpG dans leur promoteur proximal, ce qui indique l’implication potentielle de mécanismes épigénétiques. Chez les mammifères, la croissance staturale est régulée par le système IGF, avec l’IGF-I et IGF-II durant la période fœtale et l’IGF-I étant inclus dans l’axe somatotrope lors la période postnatale. La nutrition pendant la période transitoire qu’est l’allaitement programme la croissance staturale et la taille adulte par une modulation du développement de l’axe somatotrope et de son activité à l’âge adulte. L’étude des mécanismes sous-jacents suggère deux vagues de programmation, qui impliquent à la fois une adaptation structurelle en période postnatale précoce et une adaptation fonctionnelle permanente chez l’adulte. La première semble impliquer une stimulation directe de la croissance axonale des neurones GHRH par l’IGF-I dans les premières semaines de vie, alors que la seconde pourrait impliquer des modifications épigénétiques permanentes à l’âge adulte
Régulation de la croissance : des mécanismes épigénétiques ?
International audienceOrganism development is controlled by both genetic programs and the environment to insure a reproductive success as adults. Linear growth is an important part of the development and is mostly controlled by genetic factors. However, the variability of height in a given species does not seem to be specifically associated with SNP. This suggests that environment may play a crucial role. In agreement, an important part of height-related genes present CpG island in their proximal promoter, indicating potential involvement of epigenetic mechanisms. In mammals, the linear growth is regulated by the IGF system, with IGF-I and IGF-II during the fetal period, and IGF-I being included within the somatotropic axis during the postnatal period. Nutrition during the lactating period programs linear growth and adult size through a modulation of the somatotropic axis development and of the setting of its activity later on. The study of underlying mechanisms suggest two waves of programming, which involve both structural adaptation during the early postnatal period and permanent functional adaptation in adulthood. The former may involve a direct stimulation of axon growth of GHRH neurons by IGF-I in first weeks of life while the latter could involve permanent epigenetic modifications in adulthood.Le développement de l’organisme est contrôlé à la fois par des programmes génétiques et par l’environnement afin d’assurer un succès reproductif à l’âge adulte. La croissance staturale est une partie importante du développement et est principalement contrôlée par des facteurs génétiques. Cependant, la variabilité de la taille chez une espèce donnée ne semble pas être entièrement sous la dépendance du background génétique. Ceci suggère que l’environnement pourrait jouer un rôle crucial. En accord avec cela, une proportion importante des gènes liés à la croissance présente un îlot CpG dans leur promoteur proximal, ce qui indique l’implication potentielle de mécanismes épigénétiques. Chez les mammifères, la croissance staturale est régulée par le système IGF, avec l’IGF-I et IGF-II durant la période fœtale et l’IGF-I étant inclus dans l’axe somatotrope lors la période postnatale. La nutrition pendant la période transitoire qu’est l’allaitement programme la croissance staturale et la taille adulte par une modulation du développement de l’axe somatotrope et de son activité à l’âge adulte. L’étude des mécanismes sous-jacents suggère deux vagues de programmation, qui impliquent à la fois une adaptation structurelle en période postnatale précoce et une adaptation fonctionnelle permanente chez l’adulte. La première semble impliquer une stimulation directe de la croissance axonale des neurones GHRH par l’IGF-I dans les premières semaines de vie, alors que la seconde pourrait impliquer des modifications épigénétiques permanentes à l’âge adulte
E-Cadherin-Deficient Epithelial Cells Are Sensitive to HDAC Inhibitors
Inactivating germline mutations in the CDH1 gene (encoding the E-cadherin protein) are the genetic hallmark of hereditary diffuse gastric cancer (HDGC), and somatic CDH1 mutations are an early event in the development of sporadic diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In this study, histone deacetylase (HDAC) inhibitors were tested for their ability to preferentially inhibit the growth of human cell lines (MCF10A and NCI-N87) and murine organoids lacking CDH1 expression. CDH1−/− breast and gastric cells were more sensitive to the pan-HDAC inhibitors entinostat, pracinostat, mocetinostat and vorinostat than wild-type cells, with an elevated growth inhibition that was, in part, attributable to increased apoptosis. CDH1-null cells were also sensitive to more class-specific HDAC inhibitors, but compared to the pan-inhibitors, these effects were less robust to genetic background. Increased sensitivity to entinostat was also observed in gastric organoids with both Cdh1 and Tp53 deletions. However, the deletion of Tp53 largely abrogated the sensitivity of the Cdh1-null organoids to pracinostat and mocetinostat. Finally, entinostat enhanced Cdh1 expression in heterozygous Cdh1+/− murine organoids. In conclusion, entinostat is a promising drug for the chemoprevention and/or treatment of HDGC and may also be beneficial for the treatment of sporadic CDH1-deficient cancers
Loss of E-Cadherin Leads to Druggable Vulnerabilities in Sphingolipid Metabolism and Vesicle Trafficking
Germline inactivating variants of CDH1 are causative of hereditary diffuse gastric cancer (HDGC), a cancer syndrome characterized by an increased risk of both diffuse gastric cancer and lobular breast cancer. Because loss of function mutations are difficult to target therapeutically, we have taken a synthetic lethal approach to identify targetable vulnerabilities in CDH1-null cells. We have previously observed that CDH1-null MCF10A cells exhibit a reduced rate of endocytosis relative to wildtype MCF10A cells. To determine whether this deficiency is associated with wider vulnerabilities in vesicle trafficking, we screened isogenic MCF10A cell lines with known inhibitors of autophagy, endocytosis, and sphingolipid metabolism. Relative to wildtype MCF10A cells, CDH1−/− MCF10A cells showed significantly greater sensitivity to several drugs targeting these processes, including the autophagy inhibitor chloroquine, the endocytosis inhibitors chlorpromazine and PP1, and the sphingosine kinase 1 inhibitor PF-543. Synthetic lethality was confirmed in both gastric and mammary organoid models of CDH1 loss, derived from CD44-Cre/Cdh1fl/fl/tdTomato mice. Collectively, these results suggest that both sphingolipid metabolism and vesicle trafficking represent previously unrecognised druggable vulnerabilities in CDH1-null cells and may lead to the development of new therapies for HDGC
Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences
Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology