25 research outputs found

    Optical computing by injection-locked lasers

    Full text link
    A programmable optical computer has remained an elusive concept. To construct a practical computing primitive equivalent to an electronic Boolean logic, one should find a nonlinear phenomenon that overcomes weaknesses present in many optical processing schemes. Ideally, the nonlinearity should provide a functionally complete set of logic operations, enable ultrafast all-optical programmability, and allow cascaded operations without a change in the operating wavelength or in the signal encoding format. Here we demonstrate a programmable logic gate using an injection-locked Vertical-Cavity Surface-Emitting Laser (VCSEL). The gate program is switched between the AND and the OR operations at the rate of 1 GHz with Bit Error Ratio (BER) of 10e-6 without changes in the wavelength or in the signal encoding format. The scheme is based on nonlinearity of normalization operations, which can be used to construct any continuous complex function or operation, Boolean or otherwise.Comment: 47 pages, 7 figures in total, 2 tables. Intended for submission to Nature Physics within the next two week

    24-Dimensional Modulation Formats for 100 Gbit/s IM-DD Transmission Systems Using 850 nm Single-Mode VCSEL

    Get PDF
    Twenty-four dimensional modulation format with 2 bit/symbol spectrum efficiency is proposed and investigated in an up to 100 Gbit/s VCSEL-based IM-DD transmission system with respect to the channel bandwidth and the power budget

    Optimized eight-dimensional lattice modulation format for IM-DD 56 Gb/s optical interconnections using 850 nm VCSELs

    Get PDF
    In this paper a novel eight-dimensional lattice optimized modulation format, Block Based 8-dimensional/8-level (BB8), is proposed, taking into account the tradeoff between high performance and modulation simplicity. We provide an experimental performance comparison with its n-level pulse amplitude modulation counterparts in a 28 GBd 850-nm vertical-cavity surface-emitting laser based intensity-modulation direct-detection system. Successful data transmission over 100 m multimode fiber links of OM3 and OM4 types is demonstrated, with a power margin close to 2 dB at 100GBASE-SR4 forward error correction threshold. A simplified bit-to-symbol mapping and corresponding symbol-to-bit demapping algorithms, together with a hyperspace hard-decision, are designed specifically for applications of short-reach data links. These algorithms are expected to use affordable computational resources with relatively low latency

    Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    Get PDF
    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation

    All-optical majority gate based on an injection-locked laser

    Get PDF
    An all-optical computer has remained an elusive concept. To construct a practical computing primitive equivalent to an electronic Boolean logic, one should utilize nonlinearity that overcomes weaknesses that plague many optical processing schemes. An advantageous nonlinearity provides a complete set of logic operations and allows cascaded operations without changes in wavelength or in signal encoding format. Here we demonstrate an all-optical majority gate based on a vertical-cavity surface-emitting laser (VCSEL). Using emulated signal coupling, the arrangement provides Bit Error Ratio (BER) of 10(-6) at the rate of 1 GHz without changes in the wavelength or in the signal encoding format. Cascaded operation of the injection-locked laser majority gate is simulated on a full adder and a 3-bit ripple-carry adder circuits. Finally, utilizing the spin-flip model semiconductor laser rate equations, we prove that injection-locked lasers may perform normalization operations in the steady-state with an arbitrary linear state of polarization.Peer reviewe

    All-optical majority gate based on an injection-locked laser

    Get PDF
    An all-optical computer has remained an elusive concept. To construct a practical computing primitive equivalent to an electronic Boolean logic, one should utilize nonlinearity that overcomes weaknesses that plague many optical processing schemes. An advantageous nonlinearity provides a complete set of logic operations and allows cascaded operations without changes in wavelength or in signal encoding format. Here we demonstrate an all-optical majority gate based on a vertical-cavity surface-emitting laser (VCSEL). Using emulated signal coupling, the arrangement provides Bit Error Ratio (BER) of 10⁻⁶ at the rate of 1 GHz without changes in the wavelength or in the signal encoding format. Cascaded operation of the injection-locked laser majority gate is simulated on a full adder and a 3-bit ripple-carry adder circuits. Finally, utilizing the spin-flip model semiconductor laser rate equations, we prove that injection-locked lasers may perform normalization operations in the steady-state with an arbitrary linear state of polarization

    100G Flexible IM-DD 850 nm VCSEL Transceiver with Fractional Bit Rate Using Eight-Dimensional PAM

    Get PDF
    We demonstrate a novel optical transceiver scheme with a net flexible bit rate up to 100Gbit/s with 5 Gbit/s granularity, using an eight-dimensional modulation format family, and investigate its performance on capacity, reach, and power tolerance
    corecore