8,139 research outputs found

    Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions

    Full text link
    Using the spin-polarized tunneling model and taking into account the basic physics of ferromagnetic semiconductors, we study the temperature dependence of the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor (DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The experimentally observed TMR ratio is in reasonable agreement with our result based on the typical material parameters. It is also shown that the TMR ratio has a strong dependence on both the itinerant-carrier density and the magnetic ion density in the DMS electrodes. This can provide a potential way to achieve larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR

    Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.

    Get PDF
    Sorbent-assisted water harvesting from air represents an attractive way to address water scarcity in arid climates. Hitherto, sorbents developed for this technology have exclusively been designed to perform one water harvesting cycle (WHC) per day, but the productivities attained with this approach cannot reasonably meet the rising demand for drinking water. This work shows that a microporous aluminum-based metal-organic framework, MOF-303, can perform an adsorption-desorption cycle within minutes under a mild temperature swing, which opens the way for high-productivity water harvesting through rapid, continuous WHCs. Additionally, the favorable dynamic water sorption properties of MOF-303 allow it to outperform other commercial sorbents displaying excellent steady-state characteristics under similar experimental conditions. Finally, these findings are implemented in a new water harvester capable of generating 1.3 L kgMOF -1 day-1 in an indoor arid environment (32% relative humidity, 27 °C) and 0.7 L kgMOF -1 day-1 in the Mojave Desert (in conditions as extreme as 10% RH, 27 °C), representing an improvement by 1 order of magnitude over previously reported devices. This study demonstrates that creating sorbents capable of rapid water sorption dynamics, rather than merely focusing on high water capacities, is crucial to reach water production on a scale matching human consumption

    Efficient and Differentiable Shadow Computation for Inverse Problems

    Get PDF

    Daphnia magna modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference

    Get PDF
    Caloric restriction (CR) produces clear phenotypic effects within and between generations of the model crustacean Daphnia magna . We have previously established that micro RNAs and cytosine methylation change in response to CR in this organism, and we demonstrate here that CR has a dramatic effect on gene expression. Over 6000 genes were differentially expressed between CR and well‐fed D. magna , with a bias towards up‐regulation of genes under caloric restriction. We identified a highly expressed haemoglobin gene that responds to CR by changing isoform proportions. Specifically, a transcript containing three haem‐binding erythrocruorin domains was strongly down‐regulated under CR in favour of transcripts containing fewer or no such domains. This change in the haemoglobin mix is similar to the response to hypoxia in Daphnia, which is mediated through the transcription factor hypoxia‐inducible factor 1, and ultimately the mTOR signalling pathway. This is the first report of a role for haemoglobin in the response to CR. We also observed high absolute expression of super‐oxide dismutase (SOD) in normally‐fed individuals, which contrasts with observations of high SOD levels under CR in other taxa. However, key differentially expressed genes, like SOD, were not targeted by differentially expressed micro‐RNAs. Whether the link between Haemoglobin and CR occurs in other organisms, or is related to the aquatic lifestyle, remains to be tested. It suggests that one response to CR may be to simply transport less oxygen and lower respiration

    Towards Gradient-Based Design Optimization of Flexible Transport Aircraft with Flutter Constraints

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140443/1/6.2014-2726.pd

    Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition

    Get PDF
    Soyasaponins are triterpenoid saponins widely found in legume plants. These compounds have drawn considerable attention because they have various activities beneficial for human health, and their biosynthesis has been actively studied. In our previous study, we found that legume plants including soybean secrete soyasaponins from the roots in hydroponic culture throughout the growth period, but the physiological roles of soyasaponins in the rhizosphere and their fate in soil after exudation have remained unknown. This study demonstrates that soyasaponins are secreted from the roots of field-grown soybean, and soyasaponin Bb is the major soyasaponin detected in the rhizosphere. In vitro analysis of the distribution coefficient suggested that soyasaponin Bb can diffuse over longer distances in the soil in comparison with daidzein, which is a typical isoflavone secreted from soybean roots. The degradation rate of soyasaponin Bb in soil was slightly faster than that of daidzein, whereas no soyasaponin Bb degradation was observed in autoclaved soil, suggesting that microbes utilize soyasaponins in the rhizosphere. Bacterial community composition was clearly influenced by soyasaponin Bb, and potential plant growth-promoting rhizobacteria such as Novosphingobium were significantly enriched in both soyasaponin Bb-treated soil and the soybean rhizosphere. These results strongly suggest that soyasaponin Bb plays an important role in the enrichment of certain microbes in the soybean rhizosphere

    Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As

    Full text link
    We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host semiconductor band structure, described by a six-band Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band model.Comment: 9 pages, 4 figure
    corecore