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1  | INTRODUC TION

Caloric restriction (CR) is the reduction in dietary intake of calories 
without undernutrition (Koubova & Guarente,  2003). CR induces 
marked phenotypic changes in many organisms. Most notably an 

increase in longevity has been observed in various arthropods, ro-
dents, yeast and possibly in humans (Heilbronn & Ravussin, 2003; 
Kapahi, Kaeberlein, & Hansen,  2017; Lakowski & Hekimi,  1998; 
Redman & Ravussin,  2011; Sohal & Weindruch,  1996; Walford, 
Harris, & Weindruch,  1987). This occurs through CR-mediated 
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Abstract
Caloric restriction (CR) produces clear phenotypic effects within and between gen-
erations of the model crustacean Daphnia magna. We have previously established 
that micro-RNAs and cytosine methylation change in response to CR in this organism, 
and we demonstrate here that CR has a dramatic effect on gene expression. Over 
6,000 genes were differentially expressed between CR and well-fed D. magna, with a 
bias towards up-regulation of genes under caloric restriction. We identified a highly 
expressed haemoglobin gene that responds to CR by changing isoform proportions. 
Specifically, a transcript containing three haem-binding erythrocruorin domains was 
strongly down-regulated under CR in favour of transcripts containing fewer or no 
such domains. This change in the haemoglobin mix is similar to the response to hy-
poxia in Daphnia, which is mediated through the transcription factor hypoxia-induc-
ible factor 1, and ultimately the mTOR signalling pathway. This is the first report of a 
role for haemoglobin in the response to CR. We also observed high absolute expres-
sion of superoxide dismutase (SOD) in normally fed individuals, which contrasts with 
observations of high SOD levels under CR in other taxa. However, key differentially 
expressed genes, like SOD, were not targeted by differentially expressed micro-
RNAs. Whether the link between haemoglobin and CR occurs in other organisms, or 
is related to the aquatic lifestyle, remains to be tested. It suggests that one response 
to CR may be to simply transport less oxygen and lower respiration.

K E Y W O R D S

caloric restriction, Daphnia, ecological genomics, gene expression, methylation, micro-RNA

www.wileyonlinelibrary.com/journal/mec
mailto:﻿
https://orcid.org/0000-0003-3358-4949
https://orcid.org/0000-0002-8945-0416
http://creativecommons.org/licenses/by/4.0/
mailto:Jack.Hearn@lstmed.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.15557&domain=pdf&date_stamp=2020-07-30


2  |     HEARN et al.

delays in the onset of processes and diseases associated with ageing 
(Koubova & Guarente, 2003; Most, Tosti, Redman, & Fontana, 2017). 
As a result, moderate CR could well be beneficial to human health, 
although this remains to be confirmed by sufficiently long-running 
clinical trials (Most et al., 2017).

The transcriptomic response to CR has been investigated in a 
variety of model organisms spanning mammals, invertebrates and 
yeasts (Choi et  al.,  2018; Ding et  al.,  2014; Dobson et  al.,  2018; 
Heintz et al., 2017; Kapahi et al., 2017; Kim et al., 2016; Matthews 
et al., 2017; Regan et al., 2016; Wood et al., 2015). Neuroprotective 
qualities of CR have been attributed to an altered gene expression 
profile of CR rats due to an altered response to oxidative stress 
and histone deacetylase activity, in addition to changes to insu-
lin-signalling pathway and longevity-associated gene levels (Wood 
et  al., 2015). In Drosophila, CR responses have been characterized 
at the whole organism and tissue level (Ding et  al.,  2014; Dobson 
et  al.,  2018; Kapahi et  al.,  2017; Regan et  al.,  2016), and there is 
an overall down-regulation of genes under CR (Ding et  al.,  2014). 
However, despite the popularity of Daphnia magna for study-
ing life history traits and the effects of environmental stressors 
(Boersma, Spaak, & De Meester, 1998; Garbutt & Little, 2014, 2017; 
Lampert,  1987; Latta IV et al., 2011; Mitchell & Lampert,  2000; 
Orsini et al., 2016), the gene-level response to CR has not previously 
been studied in this species.

1.1 | Environmental stressors and caloric restriction 
in Daphnia magna

There is a wealth of existing phenotypic data in Daphnia, includ-
ing demonstrations of CR-mediated lifespan increase (Latta IV 
et al., 2011), which we confirm and expand upon here. There are 
also clear maternal effects due to CR where D. magna mothers 
exposed to CR produce offspring that are (a) larger at birth, (b) 
feed at a slower rate than offspring of abundantly fed mothers and 
are (c) more resistant to parasitism (Garbutt & Little, 2014, 2017). 
Furthermore, as Daphnia are aquatic invertebrates it is possible 
that they respond to CR in a manner that is partially distinct from 
terrestrial invertebrates. We explore this novel perspective in the 
context of haemoglobins here.

1.2 | Daphnia haemoglobins and the link to CR

Haemoglobin (henceforward “Hb”) production was observed to 
increase in response to food levels in D. magna (Fox et al., 1951; 
Zeis, 2020). However, no further studies have considered the rela-
tionship between nutrition and Hb in Daphnia. By contrast, it is well 
established that the response to hypoxia and hyperthermal stress in 
D. magna and D. pulex causes changes in Hb concentration and subu-
nit components to occur (Cuenca Cambronero, Zeis, & Orsini, 2018; 
Gerke, Börding, Zeis, & Paul, 2011; Lai et al., 2016; Lyu et al., 2015; 
Zeis et al., 2003). This suggests that there is phenotypic plasticity 

in the Daphnia Hb response to stress. Interestingly, acclimation to 
hypoxic conditions in D. magna results in smaller adults without 
impacting on clutch size during the first five broods (Seidl, Paul, & 
Pirow, 2005), a phenotype which is similar to that for the offspring of 
CR individuals (Garbutt & Little, 2014). Links between nutrition and 
hypoxia have not been explored widely, although in Drosophila a low-
protein CR regime partially reverses the reduction in lifespan caused 
by hypoxia (Vigne & Frelin,  2006). Indeed, hypoxia increases hae-
moglobin levels across vertebrates and aquatic crustaceans, which 
suggests a Hb gene response to oxygen stress occurs across taxa 
(Harrison, Greenlee, & Verberk, 2018).

Daphnia magna encodes 12 di-domain Hb genes [as annotated in 
the gene set: (Orsini et al., 2016)] that result from a complex series of 
duplications (Colbourne et al., 2011; Zeis, 2020). Sixteen Hb di-do-
mains are aggregated to form the free-circulating D. magna Hb mol-
ecule (Zeis, 2020). Different combinations of Hb isoforms produce 
structurally distinct Hb molecules, which in turn have different oxy-
gen-binding characteristics (Zeis, 2020). The induction of Hb genes 
in Daphnia is mediated by the transcription factor hypoxia-inducible 
factor (HIF) (Gorr, Cahn, Yamagata, & Bunn, 2004; Zeis, 2020), a het-
erodimer formed from HIF-1α and HIF-1β proteins. The HIF-1 com-
plex is an important factor in extending longevity of Caenorhabditis 
elegans under CR (Di Chen & Kapahi,  2009; Lee, Hwang, & 
Kenyon, 2010; Y. Zhang, Shao, Zhai, Shen, & Powell-Coffman, 2009). 
Increased expression of HIF-1 alone was responsible for increased 
lifespan and was triggered by elevated concentrations of mitochon-
drial reactive oxygen species (Lee et al., 2010).

1.3 | Control mechanisms underpinning 
CR responses

The free radical theory of ageing has been linked to CR 
(Gladyshev,  2014; Liochev, 2013; Vina, Borras, Abdelaziz, Garcia-
Valles, & Gomez-Cabrera, 2013). The theory hypothesizes that 
ageing results from accumulated oxidative damage due to reactive 
oxygen species. Superoxide dismutase (SOD), a key component of 
the theory (Gladyshev, 2014), defends against reactive oxygen spe-
cies (ROS) by converting abundant superoxide into hydrogen perox-
ide and oxygen. The link between SOD and longevity is supported by 
experiments showing that the absence of SOD genes corresponds 
to decreased lifespans across a range of taxa (Muid, Karakaya, & 
Koc, 2014; Muller et al., 2006; Oka, Hirai, Yasukawa, Nakahara, & 
Inoue, 2015).

Four nutrient-sensing signalling pathways are often implicated 
in lifespan extension as a result of CR (Kenyon,  2010). They are 
(a) the insulin/insulin-like growth factor (IGF-1), (b) the mechanis-
tic target of rapamycin (mTOR) signalling pathway, (c) 5' adenosine 
monophosphate-activated protein kinase (AMP Kinase) and (d) sir-
tuin signalling protein-modulated pathways. These pathways are 
complex and interlinking, with mTOR signalling potentially acting as 
the ultimate modulator of the other three (Johnson, Rabinovitch, & 
Kaeberlein, 2013).
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1.4 | Characterizing transcriptomic responses to CR

To characterize phenotypic and genotypic ageing in a single organ-
ism, we performed a whole organism longevity experiment on a 
set of eight D. magna genotypes each subjected to a calorically re-
stricted and normal diet. To contrast gene expression between food 
levels, we selected one genotype that demonstrated increased lon-
gevity here. We have previously established that life history traits 
(Garbutt & Little,  2014, 2017), DNA methylation (Hearn, Pearson, 
Blaxter, Wilson, & Little,  2019) and miRNA expression in the se-
lected strain (Hearn et al., 2018) respond to CR; indeed, the miRNA 
was sequenced from the same set of RNA extractions. Using gene- 
and transcript-level expression change of this CR-responsive geno-
type of D. magna, we now identify known and novel gene families 
and metabolic pathways implicated in CR.

2  | MATERIAL S AND METHODS

2.1 | Longevity experiment

This experiment used eight genotypes from geographically dispersed 
populations. These were obtained from the D. magna diversity panel held 
in Basel, Switzerland (http://evolu​tion.unibas.ch/ebert/​resea​rch/refer​
encep​anel/). They are (clone ID, Country of Origin): BEK22 (Belgium), 
Clone 32 (UK), FIFAV1 (Finland), GBEL75 (UK), GG8 (Germany), ILPS1 
(Italy), MNDM1 (Mongolia) and RUYAK1-6 (Russia). Prior to the experi-
ments, replicates of all genotypes were put through three generations of 
acclimation to harmonize environmental effects arising from variation in 
stock conditions. During this period, each individual was maintained in 
a 60-ml glass jar filled with artificial pond medium (Klüttgen, Kuntz, & 
Ratte, 1994). This was changed twice weekly and when offspring were 
produced. Each individual was fed ~6.25 × 106 Chlorella vulgaris cells 
daily and was maintained on a 12:12 L:D cycle at 20ºC. We estimate 
cell numbers by measuring the daily optical absorbance of 650 nm white 
light by the Chlorella culture, with 1.0 absorbance being equivalent to ap-
proximately 5 × 106 algal cells. Offspring from the second clutch initiated 
each generation, including the experimental generation.

From the acclimated females of all eight genotypes, two offspring 
from clutch two were taken. One was assigned to normal food (NF: 
~6.25 × 106 cells as per acclimation) and one was assigned to a caloric 
restriction (CR: ~1.4 × 106 cells) treatment, which is approximately 20% 
of the amount of food available to NF replicates. Each food treatment 
and genotype combination were replicated 24 times. Date of birth and 
date of death were recorded. They were otherwise maintained identi-
cally to the acclimation period.

2.2 | Survival analysis

A Cox's proportional hazards model was used to test for differ-
ences in longevity between the two food treatments for all eight 

genotypes. This was done using the survival package in R (code used 
and model outputs: File S2, clone longevity input data: File S3). The 
response variable was days alive, with genotype, food treatment and 
their interaction (days alive  =  clone +food  +  clone*food) as fixed 
effects. There was no censoring as all individuals were followed 
from their day of birth to the day of death. We present the results 
of the analysis of deviance (ANOVA) for the Cox's model which per-
forms χ2-tests of likelihood ratios of each model factor sequentially, 
which in this case was food, followed by clone, followed by their 
interaction.

2.3 | Material for RNA harvesting

Clone 32 (UK; Auld, Hall, Housley Ochs, Sebastian, & Duffy, 2014) 
was selected for RNA sequencing because it showed a longev-
ity response in the above experiment, and it shows clear mater-
nal effects under variation in maternal food—larger offspring are 
produced under CR (Garbutt & Little,  2014, 2017). This clone 
was also the focus of more detailed analysis of food and longev-
ity (Clark, Wilson, McNally and Little, In revision) where it again 
showed lifespan extension in response to food restriction. To 
generate RNA, maternal lines of Clone 32 were first acclimatized 
for three generations in artificial pond medium at 20°C and on 
a 12h:12h light:dark cycle and fed 2.5  ×  106 cells of the single-
celled green algae Chlorella vulgaris daily. The treatment genera-
tion [G0 in (Hearn et al., 2018)] was then split into two groups of 
eight replicates paired by mother and fed either a normal diet (NF) 
of 5 × 106 algal cells/day or a caloric-restricted (CR) diet of 1 × 106 
algal cells/day per individual. Each replicate was formed of five D. 
magna reared in the same jar from birth.

After the birth of the first clutch of offspring in a replicate 
jar, the offspring were removed and the jar was treated for mi-
crobial contamination with tetracycline and ampicillin (as de-
scribed in Hearn et  al.,  2018) over 24  hr, and then, the five G0 
D. magna individuals were homogenized in 700ul Qiazol Qiagen 
reagent ID: 79,306, and stored at −70°C until further processed. 
RNA was extracted using miRNeasy mini kits (Qiagen Cat No./
ID: 74,106) and quality and integrity checked by Qubit (Thermo 
Fisher) fluorometer, nanodrop (Thermo Fisher) and Bioanalyzer 
(Agilent). No degradation was observed on Bioanalyzer total RNA 
traces. Extractions were subsequently halved, and one half was 
used to create small RNA libraries for miRNA expression anal-
ysed in Hearn et al. (2018). TruSeq-stranded mRNA-seq (Illumina, 
San Diego, USA) libraries were prepared by Edinburgh Genomics 
from the remaining RNA for eight normal food and eight calor-
ic-restricted replicates as for the previous study. All libraries were 
multiplexed and sequenced on one lane of HiSeq 4,000 to at a 
targeted depth of 15 million read-pairs per sample yielding a total 
of at least 290 million read-pairs. Raw sequencing data generated 
by this project were deposited in the European Nucleotide Archive 
under Bioproject PRJEB25137.

http://evolution.unibas.ch/ebert/research/referencepanel/
http://evolution.unibas.ch/ebert/research/referencepanel/
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2.4 | Differential gene expression and transcript 
usage analysis

Reads were adapter and quality trimmed with Cutadapt (version 1.16, 
options: -q 15 --trim-n -m 36) (Martin, 2011), and then Trimmomatic 
(version 0.36, default options) (Bolger, Lohse, & Usadel, 2014) to re-
move remaining residual adapter sequence. Fastq files were inspected 
using FastQC (Andrews,  2010) before and after quality filtering to 
confirm the removal of adapter-derived and low-quality sequences 
and reports combined using multiQC (version 1.8). We used a tran-
script-driven approach to quantify gene expression as (a) an excel-
lent gene set is available for D. magna (Orsini et al., 2016, 2018), (b) 
“alignment-free” mapping approaches to transcripts are at least the 
equal of genome-based alignments for RNASeq (C. Zhang, Zhang, Lin, 
& Zhao, 2017), and (c) the D. magna genome is still in draft form with 
many genes overlapping and/or spread across multiple scaffolds. Gene 
expression per replicate was quantified using Salmon v0.13.1 (Patro, 
Duggal, Love, Irizarry, & Kingsford,  2017) with parameters “salmon 
quant --dumpEq --validateMappings --rangeFactorizationBins 4 -l 
A --seqBias –gcBias” against the D. magna reference transcriptome 
(Orsini et al., 2016, 2018). The reference transcriptome was created 
by combining principal and alternative transcripts (downloaded from 
http://arthr​opods.eugen​es.org/Evide​ntial​Gene/daphn​ia/daphn​ia_
magna/​Genes/​early​access) and indexed with a k-mer size of 25.

The Salmon results were converted into a gene-by-replicate ex-
pression matrix for input to DESeq2 (Love, Huber, & Anders, 2014) 
with the R package tximport (Soneson, Love, & Robinson, 2015). Read 
mapping rates per replicate were taken from the resulting Salmon 
log files (Table S1). Differential gene expression between caloric re-
striction and normal food replicates was tested using DESeq2, with 
“mother” fit as a blocking factor (~ mother + condition). Relationships 
between replicates, treatment and mother were assessed through a 
principal component analysis (PCA) plot generated in DESeq2, which 
was based on the top 500 most-variable genes in the data set. We 
incorporated log2-fold changes into our significance test and report 
genes significant at log2-fold change thresholds of 1, and 2 as this 
is more robust than post hoc filtering of genes by log2-fold change 
alone. This method results in s-values for the nonzero log2-fold change 
analyses (i.e. log2-fold change 1 and 2) that are analogous to q-values 
(Stephens, 2016; Zhu, Ibrahim, & Love, 2019). S-values are a measure 
of the chance that the sign (+ or -) of the log2-fold change for the 
gene is question is incorrect. We applied a significance threshold of 
0.005 to the s-values as recommended by DESeq2 and apeglm (Zhu 
et al., 2019) package authors, as s-values are less conservative than 
q-values. We also performed significance testing without imposing 
a log2-fold change threshold (referred to as 0 log2-fold change) in 
DESeq2, with a q-value threshold of 0.05. We advise caution on the 
use of log2-fold change thresholds, however. Although they helped 
us to identify a general trend in the data, the method penalized high 
expression genes. This is because the variance in gene expression 
increases with the level of gene expression (Anders & Huber, 2010), 
meaning that high expression genes have wider confidence intervals 
on their predicted log2-fold changes; although DESeq2 does model 

for this “overdispersion.” We also considered genes differentially 
expressed at log2-fold change 0 with overall expression of greater 
than 10,000 length-scaled transcripts per million (TPM) when inter-
preting the results. Differential transcript usage (DTU) was tested in 
DRIMSeq (Nowicka & Robinson, 2016) and DEXSeq (Anders, Reyes, 
& Huber,  2012), and the overall false discovery rate (OFDR) for a 
two-step procedure (here referring to gene and transcript level) was 
calculated in stageR following Love, Soneson, and Patro (2018), with 
“mother” fit as a blocking factor as for DESeq2. Only those genes that 
exhibited significant DTU in both DRIMSeq and DEXSeq after OFDR 
were considered further. Differential gene and transcript analysis 
scripts are given in File S2.

2.5 | Topgo and gene set enrichment analysis

Gene ontology term enrichment was tested in topGO (Alexa & 
Rahnenfuhrer, 2016) for each category of significant gene from gene- 
and transcript-level analyses using D. magna GO term annotations 
following Hearn et  al.  (2018) and Hearn, Pearson, et al. (2019). A 
conservative p-value threshold of 0.01 was applied with no multiple 
testing correction in line with topGO author recommendation (Section 
6.2. The adjustment of p-values, topGO manual: https://bioco​nduct​
or.org/packa​ges/relea​se/bioc/html/topGO.html). We considered en-
riched GO terms of the biological process (BP) and molecular func-
tion (MF) subcategories for discussion. We clustered the significantly 
enriched GO terms in two-dimensional semantic space and treemaps 
of higher-order processes using REVIGO (Supek, Bošnjak, Škunca, & 
Šmuc, 2011) following Hearn, Blaxter, et al. (2019) to identify patterns 
in enrichment and reduce redundancy in GO terms. We adapted the 
REVIGO webserver-produced R script for each category of enriched 
GO terms to combine groups of terms by colour according to the 
REVIGO treemap categories (R script, File S2).

Gene set enrichment analysis (GSEA) of D. magna KEGG (Kyoto 
Encyclopedia of Genes and Genomes) orthologs (Kanehisa & Goto, 2000; 
Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 2015) was applied to 
identify KEGG gene pathways up- or down-regulated under CR. GSEA 
was run for all genes in the expression experiment using their log2-fold 
changes from the log2-fold change zero differential gene expression ex-
periment. To obtain KEGG annotations for each gene, the D. magna gene 
set was annotated with trinotate (Haas et al., 2013) and gene-to-KEGG 
annotations were input to the universal enrichment protocol of cluster-
Profiler (Yu, Wang, Han, & He, 2012); a q-value cut-off of 0.05 was used 
to determine significance (R scripts: File S2). We ran 1,000 iterations of 
GSEA as the results were variable between runs, and selected only those 
KEGG terms found significant in > 95% of runs.

2.6 | Interaction between expression level and 
differential methylation

Average TPM gene expressions calculated in tximport and normal-
ized in DESeq2 for CR and NF were correlated with the proportion of 

http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/earlyaccess
http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/earlyaccess
https://bioconductor.org/packages/release/bioc/html/topGO.html
https://bioconductor.org/packages/release/bioc/html/topGO.html
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methylation within genes for the corresponding treatment using data 
taken from Hearn, Pearson, et al. (2019). A schematic of the relationships 
between data sets in this work is given in File S1. Proportion methylated 
was defined as the count of methylated reads over the total reads at CpG 
sites within a genic region (exons + introns) aligned against the D. magna 
genome assembly (version 2.4) using Bismark (Krueger & Andrews, 2011), 
see Hearn, Pearson, et al. (2019) for further detail. Genic regions were de-
fined from the D. magna reference annotation (downloaded from http://
arthr​opods.eugen​es.org/Evide​ntial​Gene/daphn​ia/daphn​ia_magna/​
Genes/​early​acces​s/dmags​et7fi​nloc9c.puban.gff.gz). CpG counts for CR 
or NF were extracted by combining CpG counts of the six replicates per 
treatment from Hearn, Pearson, et al. (2019) from Bismark bam files. 
Average methylation rates within genic regions per treatment were cal-
culated using bedtools (Quinlan & Hall, 2010). We then combined CpG 
averages with corresponding average TPM expression for each gene, 
calculated from the normalized Salmon count matrix. Genes that had ex-
pression greater than 10 TPM, at least 5% CpG methylation, and did not 
overlap another gene in D. magna annotation were retained for the corre-
lation analysis. We applied Spearman's rho and Kendall's tau calculated in 
base R to the results, because of the lack of normality in the proportions 
of methylation and mean expression data. Furthermore, we intersected 
the list of differentially expressed genes at each log2-fold threshold and 
differential transcript usage results with the differentially methylated re-
gions identified in response to CR from Hearn, Pearson, et al. (2019).

2.7 | MiRNA target prediction and mRNA-MiRNA 
expression correlation

MiRNA targets of differentially expressed miRNAs identified in 
Hearn et al. (2018) were predicted in the 3’ untranslated regions (3’ 
UTRs, following Graham & Barreto, 2019) of differentially expressed 
genes using PITA (Kertesz, Iovino, Unnerstall, Gaul, & Segal, 2007), 
RNAhybrid (Krüger & Rehmsmeier,  2006), miRanda (Enright 
et al., 2003), MicroTar (Thadani & Tammi, 2006) and rna22 (Miranda 
et  al.,  2006) implemented on the tools4miRs webserver (Lukasik, 
Wójcikowski, & Zielenkiewicz, 2016). Only those 3’ UTRs predicted 
as targets by at least four programs were considered further. The 
DESeq2 normalized count matrices for differentially expressed miR-
NAs (taken from Hearn et al., 2018), and mRNAs at log2-fold change 
0 were supplied as input to miRLAB for Pearson's correlation of 
expression levels (Le, Zhang, Liu, Liu, & Li,  2015). The correlation 
results were intersected with the list of predicted miRNA to mRNA 
targets. MiRNA-mRNA pairs with greater than 0.5 or less than −0.5 
correlation in expression level were considered further.

3  | RESULTS

3.1 | Effect of CR on longevity

Cox's proportional hazards ANOVA (see File S2 for R code and model 
output) of the survivorship data (File S3) showed that CR D. magna 

lived longer on average than NF D. magna (χ2 = 13.26, p =  .0003; 
Figure 1, part A). Clone 32 was one of the clones that demonstrated 
increased longevity under CR (Figure 1, Part B). Genotypes also dif-
fered in their lifespans (χ2 = 155.4, p < .0001), and there was a sig-
nificant interaction between genotype and food level for differences 
in longevity (Figure 1; χ2 = 29.4, p = .0001).

3.2 | Expression experiment

A median of 23,365,302 read-pairs were sequenced per sample with 
a range of 21,452,900–26,752,873, and FastQC revealed no issues 
with read quality after trimming (Table S1: read filtering and align-
ment rates, File S4: multiQC report). Read mapping rates of greater 
than 80% were recorded for all replicates, except one (3H2, NF) that 
had a mapping rate of 74% (Table S1).

The number of genes differentially up- or down-regulated in CR 
at the 0 log2-fold change level was similar, at 3,345 an 3,064, respec-
tively, CR (Table 1, Tables S2–S4). This global response was reflected 
in the PCA plot of replicates (Figure  2), in which the first compo-
nent explains 49% of the variance and separates all sample pairs by 
treatment. Variance between mothers in the PCA (different colours 
in Figure 2) can be explained by “jar effects,” such as differences in 
the micro-environment of our incubators (Hurlbert, 1984). This was 
also true for miRNAs derived from the same RNA extractions (Hearn 
et al., 2018). However, with increasing log2-fold change thresholds 
there was a bias towards genes being up-regulated in CR (Table 1).

There were 75 genes with a mean expression greater than 
10,000 TPM that were significant at the log2-fold change 0 thresh-
old and up-regulated in CR, versus 15 that were down-regulated. 
Four of the 15 genes down-regulated under CR were superoxide dis-
mutases that are involved in protection from oxidative damage, in-
cluding the most expressed gene (Dapma7bEVm009708) at a mean 
expression of 847,468.627 TPM. This was over 6-fold greater than 
the next gene, a Vitellogenin-1 precursor (Dapma7bEVm014991) 
(Table S5: gene descriptions and expression levels). Two further vi-
tellogenin-1 precursor genes were in the top five CR up-regulated 
genes (Dapma7bEVm018415 and Dapma7bEVm029595), as was a 
di-domain haemoglobin precursor (Dapma7bEVm029622). By con-
trast, the gene lists for the log2-fold changes 1 and 2 were composed 
of genes at relatively modest expression levels and contained a high 
proportion of uncharacterized genes (Table S5).

3.3 | Differential transcript usage and HB-
related genes

For differential transcript usage, 498 transcripts corresponding to 
294 genes were significant in the DEXSeq analysis and 327 tran-
scripts from 187 genes for the DRIMSeq analysis. There was an over-
lap of 181 transcripts and 112 genes between the two methods (File 
S5: DRIMSeq transcript expression levels for DTU significant genes). 
Of these, 32 genes have a mean gene expression normalized count 

http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/earlyaccess/dmagset7finloc9c.puban.gff.gz
http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/earlyaccess/dmagset7finloc9c.puban.gff.gz
http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/Genes/earlyaccess/dmagset7finloc9c.puban.gff.gz
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level greater than 1,000 TPM and five greater than 10,000 TPM. The 
most highly expressed DTU exhibiting gene was a di-domain hae-
moglobin precursor (Figure 3, Dapma7bEVm014981) with a TPM of 
65,675. The isoform most abundant in CR replicates (“Transcript 21,” 
Figure 3) does not contain a haem-binding erythrocruorin domain, 
whereas an isoform containing three such domains (“Transcript 12,” 
Figure 3) is down-regulated in CR. A further di-domain haemoglobin 
was also in this high expression group (Dapma7bEVm015367, TPM 
13,532).

Following from this result, we found that one Hb trans-inducer 
HIF-1α (Dapma7bEVm009543) was up-regulated significantly in 
CR (log2-fold change 0) at a mean expression of 6,903 TPM versus 
4,558 in NF. Three of the HIF-1 co-dimer HIF-1β genes were DE at 
this threshold, the highest expressed gene was down-regulated in 
CR at a mean 2,316 TPM versus 2,667 in NF. The two other HIF-1β 

genes were up-regulated in CR, but had lower average overall ex-
pression at 464 and 391 TPM, respectively. An mTOR protein kinase 
(Dapma7bEVm000341) was also up-regulated under CR at log2-fold 
change 0 albeit with a modest log2-fold change overall (0.14) and 
mean expression of 2,434 TPM.

3.4 | Gene ontology and gene set 
enrichment analyses

For molecular function GO term enrichment, 20 and 21 terms were 
significantly up- and down-regulated at log2-fold change 0, respec-
tively (Table S6). Biological process GO terms differ in that 25 terms 
are enriched for genes down-regulated in CR at log2-fold change 0, 
versus 8 that were up-regulated (REVIGO clustering of GO terms, 
Figure 4 and Table S7).

By contrast to the Biological process GO terms, for the GSEA 
analysis of KEGG terms five of the six enriched terms were groups of 
genes up-regulated under CR (representative GSEA result, Figure 5). 
The five KEGG terms significantly enriched in CR were for serine/
threonine-protein kinase/endoribonuclease IRE1 (K08852), prepro-
tein translocase subunit SecA (K03070), serine/threonine-protein 
kinase/endoribonuclease IRE2 (K11715), chitinase (K01183) and 
cytochrome P450 family 4 (K15001). The single term enriched in 
CR down-regulated genes was for apolipoprotein D and lipocalin 

F I G U R E  1   CR Daphnia magna lived approximately 15 days longer than NF D. magna on average. A) Point estimates are mean longevity 
across clones for each treatment, and whiskers are standard errors. B) Survivorship between treatments varied among the eight different D. 
magna genotypes (dashed line = NF, solid line = CR); Clone 32 is labelled in bold in the upper-left plot
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TA B L E  1   Significantly differentially expressed genes at each 
log2-fold change threshold. More genes were up-regulated in CR 
replicates

Log2-fold 
change 0

Log2-fold 
change > 1

Log2-old 
change > 2

Up-regulated 
in CR

3,345 280 62

Down-regulated 
in CR

3,063 52 11
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family protein (K03098). GSEA chitinase (K01183) up-regulation in 
CR overlaps with GO enrichment for chitin metabolism and chitin 
binding (Figure 4, B and D).

3.5 | Overlap with differentially methylated regions

Over 2,000 genes that met our criteria (i.e. expression greater 
than 10 and at least 5% methylation) were included in the cor-
relations with CpG methylation rate for each of the NF and CR 

comparisons. Weak, significant and highly concordant negative 
correlations were found for both comparisons for Kendall's tau 
and Spearman's rho (File S6). Previously, we identified 115 and 
192 genes containing regions of hypo- or hypermethylated at 
CpG sites under CR, respectively (Hearn, Pearson, et al., 2019). 
For both categories of methylation, there was little signal of co-
regulation with gene expression. The majority of overlap occurs 
at the log2-fold 0 level for which thousands of genes were signifi-
cantly up- and down-regulated under CR implying a high degree 
of overlap by chance (Table  2). Only two genes up-regulated in 

F I G U R E  2   DESeq2 generated 
PCA plots of regularized logarithm 
transformation of data of replicates 
in the nutrition experiment. Shapes 
define treatment, and colour defines 
mother of each pair of replicates. Figure 
legend: NF = normal food, CR = caloric 
restriction. Dashed lines indicate 
relationship between replicates paired by 
mother; these are always divided along 
the x-axis in the same direction

F I G U R E  3   Transcript proportion plots 
and protein domains for differentially 
used transcripts of an up-regulated 
di-domain haemoglobin. Transcripts 11, 
12 and 21 of gene Dapma7bEVm014981 
show DTU across conditions in DEXSeq as 
does transcript 12 in DRIMSeq-adjusted 
results. Part A) Bars represent proportions 
of total gene expression for that transcript 
per replicate, and diamonds DRIMSeq 
fitted values: Up in CR = transcript up-
regulated in CR; Down in CR = transcript 
down-regulated in CR. B) InterProScan 
predicted globin-like super-family 
(IPR009050) and erythrocruorin 
(IPR002336) protein domains for 
transcripts 11, 12 and 21, which shows 
the varying number of erythrocruorin 
domains. Transcript 21 does not encode 
an erythrocruorin domain at all

(a)

(b)
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CR with a log2-fold change of 1 or greater intersected with dif-
ferentially methylated regions. One was an uncharacterized gene 
(Dapma7bEVm028334), which was identified as hypo-methylated 

under CR in Hearn, Pearson, et al. (2019), and the other an integral 
membrane protein (Dapma7bEVm027395), which was hypermeth-
ylated under CR.

F I G U R E  4   REVIGO scatter plots of enriched biological process GO terms for Caloric Restriction versus Normal Food. GO terms are 
grouped by REVIGO into broader categories indicated by colour and legend, Circle size is –log10 of the topGO enrichment p-value with 
scales inset next to each plot. A) Down-regulated in CR Biological Process GO terms, B) up-regulated in CR Biological Process GO terms 
C) down-regulated in CR molecular function GO terms and D) up-regulated in CR molecular function GO terms. GO terms associated with 
numbers can be found in Table S11

(a) (b)

(c) (d)
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3.6 | MiRNA interaction

In total, 240 miRNA-mRNA pairs were predicted by the combined 
target-site method, which was composed of 117 genes and 34 miR-
NAs (miRNA-mRNA pairs and miRbase homologs: Table S8). Many 
miRNAs were predicted by our combined approach to target mul-
tiple genes, hence the discrepancy between number of genes and 
miRNAs. As for the expression analyses, these miRNA-mRNA 
pairs showed a bias towards genes expressed more highly under 

CR (Table  3). The strongest negative correlation for genes up-
regulated in CR was −0.71, and the strongest positive correlation 
was 0.87. There was little overlap between these genes and other 
genes of interest, but a Histone-lysine N-methyltransferase Suv4-
20 (Dapma7bEVm018601, mean expression = 10,277 TPM), which 
is important for DNA repair functions, was up-regulated under CR 
and was negatively correlated with nine miRNAs (Table S8: gene de-
scription for gene numbers included in Table 3). Four of the genes 
exhibiting DTU were predicted to have miRNA targets, of these only, 
a Para-nitrobenzyl esterase (Dapma7bEVm000405), was annotated.

4  | DISCUSSION

First, we established that CR has an effect on average lifespan across 
eight different genotypes of D. magna, in line with previous results 
(Garbutt & Little,  2014, 2017; Latta IV et al., 2011). Focussing on 
Clone 32, we explored the molecular basis of CR through differ-
ence in gene expression with normal food levels. This difference was 

F I G U R E  5   Gene Set Enrichment Analysis ridge plot for significant KEGG terms. Ridge plots are density plots of the frequency of 
log2-fold change values per gene within each enriched KEGG group, which helps to interpret the up- or down-regulation of that KEGG 
category. The plot was created in clusterProfiler using KEGG orthologue annotations and log2-fold changes per gene calculated by DESeq2 
during differential expression analysis. X-axis is log2-fold change in expression for genes present in each KEGG category plotted, with 
positive values indicating up-regulated expression in CR replicates and negative values down-regulated expression in CR replicates. Peaks 
are coloured by corrected p-value as shown by the legend, and corrected p-value and q-values are shown per KEGG category. KEGG term 
complete definitions: 1 = K08852: serine/threonine-protein kinase/endoribonuclease IRE1; 2 = K03070: preprotein translocase subunit 
secA; 3 = K11715: serine/threonine-protein kinase/endoribonuclease IRE2; 4 = K01183: chitinase; 5 = K15001: cytochrome P450 family 4; 
6 = K03098: apolipoprotein D and lipocalin family protein

TA B L E  2   Overlap between significantly expressed genes at log2-
fold change 0 and hypo- or hypermethylated genes. Percentages 
were calculated from total hypo- and hypermethylated genes

Up-regulated in CR
Down-
regulated in CR

Hypo-methylated 20 (10%) 48 (25%)

Hypermethylated 16 (14%) 28 (24%)



10  |     HEARN et al.

global, as over 6,000 genes respond to treatment (Table 1. Log-fold 
change 0), and more genes were significantly up-regulated under CR 
with increasing log2-fold change thresholds (Table 1).

By bringing together several distinct analyses incorporating 
differential transcript usage, gene-level differential expression, 
gene ontology enrichment, gene set enrichment analysis, mi-
cro-RNA and methylation changes, we were able to make distinct 
biological inferences. The following discussion is organized by 
these inferences, each of which roughly corresponds to a result 
from a distinct analysis. In part 1, we focus on the haemoglobin 
response that emerged from the DTU analysis with support from 
gene expression results; part 2, discusses the endoplasmic reticu-
lum stress–response results from GSEA; part 3, down-regulation 
of superoxide dismutase is a gene-level response identified in 
DESeq2; part 4, shows overlap in GO and GSEA down-regulated in 
CR processes; part 5, asks why differential methylation identified 
in response to CR in the same clone (Hearn, Pearson, et al., 2019) 
did not impact upon gene expression; finally, part 6 examines 
miRNA correlations that were biased towards genes up-regulated 
in CR.

4.1 | A haemoglobin response to CR in D. magna

Fewer genes had differential transcript usage detected than dif-
ferential gene expression. This may reflect biological reality as 
the eight replicates per condition give reasonable power in DTU 
analyses (by comparison with simulated data in Love et al., 2018). 
However, our average sequencing depth per replicate of 17.2 
mega-bases is lower than the 30–40 mega-bases simulated by 
Love et al., 2018, which could have resulted in under-sampling of 
lowly expressed isoforms. Alternatively, this could be because we 
were conservative in our approach to filtering DTUs by only tak-
ing the union of DEXSeq and DRIMSeq. Gene isoforms may also 
be under-annotated, although the gene set used as a reference 
was from a comprehensive bioinformatic construction of D. magna 
gene expression after exposure to twelve environmental stressors 
(Orsini et al., 2016).

DTU analysis identified a highly expressed Hb gene that re-
sponded to CR by changing isoform proportions (Figure  3). We 
believe it is the first time haemoglobin genes have been implicated 

in CR in D. magna. This is concordant with the observed chang-
ing Hb protein levels in response to food in Daphnia (Fox et al., 
1951). The gene involved, Dapma7bEVm014981, has many dif-
ferent isoforms with the three most highly expressed in this ex-
periment exhibiting varied proportions of expression between 
CR and NF. Most strikingly, transcript 12, which encodes three 
erythrocruorin (IPR002336) domains, is down-regulated strongly 
in CR (Figure  3). These erythrocruorin domain provide the scaf-
fold for a Haem-binding pocket (http://www.ebi.ac.uk/inter​pro/
entry/​Inter​Pro/IPR00​2336/) and hence oxygen affinity of the hae-
moglobin gene product. Based on these results, we hypothesize 
that D. magna moderates its haemoglobin mix in response to CR 
by reducing respiration, leading to a lower proportion of haemo-
globin containing erythrocruorin domains under CR. This is evi-
denced by a change in the proportions of expressed isoforms of 
gene Dapma7bEVm014981 under CR in favour of isoforms with-
out (transcript 21) an erythrocruorin domain or two domains only 
(transcript 11). Thus, variation in erythrocruorin domains could un-
derlie the observed correlation between oxygen-binding capacity 
and structurally distinct Hb gene isoforms (Zeis, 2020).

As far as we are aware the effect of stress, here in the form of 
CR, on haemoglobin isoform expression has not been established 
prior to this work. We believe will be a fruitful area of future re-
search in Daphnia and other organisms. For example, mammalian 
RNA-dependent protein kinase R (PKR) is an intracellular sensor 
of stress that has recently been shown to also be essential for glo-
bin gene expression generally (Ilan et al., 2017). It could potentially 
also act in conditions of cellular stress to modulate haemoglobin 
expression, while in Drosophila knockdown of a globin gene ex-
pressed in the trachea reduces survival under hypoxia (Gleixner 
et al., 2016; Harrison et al., 2018), presumably due to a role in pro-
viding adequate oxygen levels. More immediately, studies of Hb 
response to environmental stressors in Daphnia should consider 
differential isoform usage following our insights here, in addition 
to Hb gene-copy usage.

The Hb mix of D. magna is known to change in response to hy-
poxia due to the action of the dimeric hypoxia-inducible factor 1 
(Cuenca Cambronero et  al.,  2018; Zeis,  2020). We identified that 
the HIF-1α component of the Hb gene transcription factor HIF-1 
is up-regulated in CR, as are two HIF-1β genes. However, the most 
highly expressed HIF-1β is down-regulated in CR. The discordant 
patterns of HIF-1 component expression suggest HIF-1 regulation is 
not straightforward. Indeed, in C. elegans HIF-1 can promote or limit 
longevity (Leiser & Kaeberlein, 2010). The involvement of HIF-1 does 
suggest a previously unidentified overlap between hypoxia and CR 
response in Daphnia. This may explain the similar phenotypic effects 
on body size in offspring under hypoxia and CR, with little associated 
impact on reproduction of CR and hypoxia (Garbutt & Little, 2017; 
Hearn et al., 2018; Seidl et al., 2005). It also indicates that the mTOR 
pathway is active in the D. magna response to CR (Land & Tee, 2007), 
which was supported here by up-regulation under CR of an mTOR 
protein kinase (Dapma7bEVm000341).

TA B L E  3   Overlap between significantly expressed genes at log2-
fold change 0 (and log2-fold change 2) and predicted correlation 
in expression between miRNA-mRNA pairs. A positive correlation 
means miRNA-mRNA pairs were both highly or lowly expressed, 
and a negative correlation that they exhibit reciprocal expression. 
Annotations for the genes in each category are given in Table S10

Up-regulated in CR
Down-
regulated in CR

Pearson's r > 0.5 33 (6) 5 (1)

Pearson's r < −0.5 33 (7) 4 (0)

http://www.ebi.ac.uk/interpro/entry/InterPro/IPR002336/
http://www.ebi.ac.uk/interpro/entry/InterPro/IPR002336/
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4.2 | The endoplasmic reticulum stress response 
under CR

The serine/threonine-protein kinase/endoribonuclease inositol-re-
quiring enzyme 1 KEGG category (IRE1, K08852) was up-regulated 
under CR in clusterProfiler GSEA analysis (Figure 5). This category 
of genes consisted of 103 genes, of which 97 were up-regulated in 
CR. Approximately two-thirds (61) of these genes are annotated as 
serine protein kinases, two of which are specifically IRE1 endori-
bonuclease (Table S9). When compared to the DESeq2 gene ex-
pression results, 56 of these genes were also up-regulated in CR at 
log-fold change 0. IRE1 is a sensor protein in the unfolded protein 
response that lowers stress in the endoplasmic reticulum. When 
activated, it initiates a transcription factor (X-box binding protein 
1) that up-regulates endoplasmic reticulum-associated degradation 
genes (Calfon et  al.,  2002). HIF-1-mediated lifespan increase in C. 
elegans under CR was suppressed in both an IRE1 deletion mutant, 
and when the X-box binding protein 1 was knocked down with RNAi 
(Di Chen & Kapahi, 2009). Transient CR-derived stress in C. elegans 
larvae causes a robust IRE1-dependent unfolded protein response 
to be maintained into adulthood, which is an example of hormesis 
(Matai et al., 2019). The up-regulation of IRE1 reported here links the 
CR response in D. magna to protein homeostasis in the ER, and the 
dysregulation of which is strongly linked to ageing in general (Brown 
et al., 2014; Chadwick & Lajoie, 2019; Cohen, Bieschke, Perciavalle, 
Kelly, & Dillin, 2006; Steinkraus et al., 2008). This gene has further 
roles in CR in other organisms. It regulates the increased usage of 
intestinal triacylglycerol in Drosophila, which mediates the metabolic 
response of midgut epithelium to CR (Luis et al., 2016). While in mice, 
the up-regulation of IRE1 in response to a reduced protein diet pro-
tects against cancer (Rubio-Patiño et al., 2018).

4.3 | Superoxide dismutase was down-regulated 
under CR

Several of the well-known candidate response genes to CR were 
significantly up-regulated under CR, including sirtuins, IGF and the 
mTOR protein kinase. None of these genes showed large differences 
in their mean expression and log2-fold changes were modest.

Copper–zinc superoxide dismutase (SOD) was down-regulated 
under CR in D. magna, and this gene has also shown varying re-
sponses to CR (or links to longevity) in other systems such as yeast 
(Mesquita et al., 2010). Overexpression of copper-zinc and man-
ganese SOD in Drosophila did not increase lifespan (Orr, Mockett, 
Benes, & Sohal,  2003), and in termites, increased longevity of 
queens was associated with enzyme activity and not expression 
level (Tasaki, Kobayashi, Matsuura, & Iuchi, 2018). The effect of 
SOD disruption on lifespan varies by experimental context in 
Drosophila (Wang, Branicky, Noë, & Hekimi, 2018). In D. magna, 
copper-zinc SOD is known to increase in expression in response 
to copper, ammonia and hypoxia levels as they are considered 
to be general stress response factors (Lyu, Zhu, Wang, Chen, & 

Yang,  2013). We hypothesize that up-regulated SOD production 
under NF was due to greater ROS production from higher respira-
tion levels than CR, which was compensated for by greater SOD 
expression. An alternative explanation is that dissolved oxygen 
content was lowered in NF rearing jars by increased respiration 
levels versus CR jars, leading to a hypoxia-induced stress response 
known to occur in D. magna and D. pulex in low oxygen conditions 
(Klumpen et al., 2017; Lyu et al., 2013). This could also explain the 
Dapma7bEVm014981 Hb gene expressing differential transcripts 
in response to hypoxia through oxygen depletion in NF versus CR. 
Arguing against this interpretation was the up-regulation of the 
stress response IRE-1 genes in CR and not in NF. This is a gene that 
was switched on under hypoxia in human tumour cells (Wouters 
& Koritzinsky, 2008) and protected against hypoxia in C. elegans 
(Mao & Crowder, 2010). As a result, we might have expected to 
see this class of genes more highly expressed (at levels equal to or 
greater than CR) if NF replicates were also hypoxic. Nevertheless, 
if reduced respiration is shown to be a hallmark of CR in Daphnia, 
oxygen levels between treatments should be checked to avoid a 
confounding effect on experimental outcomes.

4.4 | Several processes were repressed under CR

Guanosine triphosphate (GTP)-related molecular function GO terms 
dominated enrichment in genes down-regulated under CR. The 
down-regulation of a GTPase has a key role in life extension due to 
CR in C. elegans (M. Hansen et  al.,  2008). This is hypothesized to 
stimulate recycling organelles and cytoplasmic proteins (autophagy), 
which promotes increased lifespans through down-stream mecha-
nisms (M. Hansen et al., 2008).

Apolipoprotein D and other lipocalin genes (K03098) were 
down-regulated under CR. In Drosophila, overexpression of 
Apolipoprotein D increased lifespan by 18% and tolerance to starva-
tion and could act as a scavenger of toxic products in defence against 
oxidative stress (Sanchez et  al.,  2006; Walker, Muffat, Rundel, & 
Benzer, 2006). Our hypothesis that cellular respiration is reduced in 
CR predicts that oxidative stress and damage will be correspond-
ingly higher under NF conditions. This would explain the decrease 
in demand for defensive molecules like Apolipoprotein D under CR 
in our experiment.

4.5 | A weak correlation between gene 
methylation and expression

We observed a negative correlation between genes with a methyl-
ated CpG portion greater than 5% and gene expression. The highly 
concordant results for CR and NF comparisons indicate there is no 
effect of CR on this relationship. In D. magna, links between meth-
ylation and alternative splicing have been observed previously 
(Asselman et al., 2017; Kvist et al., 2018), and DNA methylation is en-
riched in gene bodies. We saw no overlap between the DTU analysis 
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and previously identified genes overlapping differentially methyl-
ated regions (DMRs), which is perhaps not surprising given the ex-
pression–methylation correlations between CR and NF expression 
and CpG methylation are almost identical. These results contrast 
with (Kvist et al., 2018) in which methylation at exons two to four 
exhibits significant positive correlations with gene expression in D. 
magna. Our focus on the response to a treatment differs from Kvist 
et al., (2018), which defined the evolutionary conservation of meth-
ylation across gene bodies in D. magna.

We suspect that the lack of concordance between the differen-
tially methylated regions identified in Hearn, Pearson, et al. (2019) 
and gene expression data lie with the methylation analysis. That 
study used a “smoothing” approach which combines methylation 
effects across sites in close proximity (K. D. Hansen, Langmead, 
& Irizarry,  2012). This approach, although tailored to the sparsely 
CpG methylated D. magna genome, was developed on mammalian 
genomes with somatic CpG methylation rates of 70%-80% (Li & 
Zhang, 2014). By contrast D. magna has a much lower methylation 
rate of 0.5%–1% (Asselman, 2019; Asselman, De Coninck, Pfrender, 
& De Schamphelaere,  2016; Asselman et  al.,  2015, 2017; Hearn, 
Pearson, et al., 2019; Kvist et al., 2018) as do most arthropods sam-
pled, with exceptions (Bewick, Vogel, Moore, & Schmitz, 2017; Lewis 
et al., 2020). We recommend that other researchers explore per site-
based methods of assessing differential methylation in arthropods 
(e.g. Park & Wu, 2016), which do not make assumptions about the 
underlying pattern of methylation. We are currently applying such 
approaches to forthcoming research in order to definitively answer 
if CR influences gene expression though methylation in D. magna.

4.6 | miRNA correlations are biased towards CR

A robust miRNA response was observed to CR in Hearn et al.  (2018), 
originating from the same total RNA samples included in this study. 
Here, we observed greater miRNA targeting of genes up-regulated in CR 
at log2-fold change 0 for both positive and negative correlations (33 in 
each case, Table 3). This is in keeping with the general bias towards up-
regulation in CR across this experiment, but we do not see overlap in the 
miRNA correlated gene lists with Hb-related genes or SOD discussed 
above. Of note, there is a negative correlation between nine miRNAs and 
Histone-lysine N-methyltransferase Suv4-20 (Dapma7bEVm018601). 
This gene is significantly up-regulated at log2-fold change 1 under CR 
(average TPM 15,063 versus 5,278 in NF). Suv4-20 trimethylates histone 
H4 lysine 20 and has an important role in DNA repair and genomic stabil-
ity (Jørgensen, Schotta, & Sørensen, 2013). However, we must interpret 
the results with caution as computational miRNA-mRNA target infer-
ence is prone to false positives (Fridrich, Hazan, & Moran, 2019; Pinzón 
et al., 2017). This is because animal miRNA seed binding is “wobbly” and 
does not require perfect complementarity between miRNA and mRNA. 
Because of this, Fridrich et al. (2019) recommend biological interpreta-
tion only when further experimental support is available, even when tak-
ing the overlap of multiple prediction programs as we have done.

Demonstrating that an mRNA is regulated by specific miRNAs 
will require the development of a crosslinking, ligation and se-
quencing of hybrids (CLASH) protocol for the D. magna Argonaute 
(AGO) proteins (Helwak, Kudla, Dudnakova, & Tollervey,  2013). 
The CLASH method isolates the AGO-miRNA-mRNA complexes 
that form during mRNA silencing by miRNA. Sequencing of the 
interacting RNA in the AGO protein can then be used to identify 
which miRNAs are bound to what mRNAs under the experimental 
condition surveyed. Even if the link between miRNA targeting and 
Suv4-20 is not borne out in future such experiments, the differ-
ential expression result indicates a potential link between CR, the 
histone epigenome and DNA repair.

5  | CONCLUSIONS

We first showed that caloric restriction increases the lifespan of D. 
magna across multiple genotypes. We then chose a CR-responsive 
genotype to survey the transcriptome of young adults after their 
first clutch and detected a number of canonical stress and CR re-
sponses. By contrasting differential transcript usage between CR 
and NF, we also showed that the haemoglobin isoform mix of a 
highly expressed D. magna Hb gene is reduced for isoforms con-
taining erythrocruorin domains. We speculate that this may re-
duce the overall respiration levels of CR individuals and partially 
explain the observed increased lifespan under CR. Components of 
the transcription factor that controls Hb gene transcription, HIF-1, 
are also differentially expressed linking the response to hypoxia 
with that for CR. An mTOR protein kinase is also differentially 
expressed and is known to modulate HIF-1. The mTOR pathway 
is implicated in CR responses of diverse organisms, which is also 
the case in D. magna. The endoplasmic reticulum is implicated in 
CR through up-regulation of IRE1 as identified by GSEA, and this 
is a potential down-stream mechanism through which lifespan in-
creases are mediated by CR. We also find that highly expressed 
copper–zinc superoxide dismutase genes are down-regulated 
under CR by orthodox gene expression analysis. This gene is 
associated with longevity in several taxa, but has a variable re-
sponse to CR. Here, we propose that SOD is down-regulated due 
to lower levels of cellular respiration in CR, resulting in lowered 
oxygen stress. Differential miRNA expression is biased towards 
CR, but functional inference is difficult. DNA methylation shows 
no crossover with gene expression here. Future work should test 
whether respiration is suppressed under CR through changes to 
the haemoglobin mix in D. magna, and whether this response oc-
curs in other organisms.
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